login
T(n,k)=Number of nXk 0..1 arrays with no 1 equal to more than one of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element.
8

%I #4 Feb 24 2017 07:50:56

%S 0,0,0,1,2,1,2,8,8,2,5,32,74,32,5,12,122,430,430,122,12,26,416,2426,

%T 3762,2426,416,26,56,1414,13062,34314,34314,13062,1414,56,118,4626,

%U 67676,286920,480995,286920,67676,4626,118,244,14930,342972,2342046,6296324

%N T(n,k)=Number of nXk 0..1 arrays with no 1 equal to more than one of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element.

%C Table starts

%C ...0.....0.......1..........2............5.............12...............26

%C ...0.....2.......8.........32..........122............416.............1414

%C ...1.....8......74........430.........2426..........13062............67676

%C ...2....32.....430.......3762........34314.........286920..........2342046

%C ...5...122....2426......34314.......480995........6296324.........80114311

%C ..12...416...13062.....286920......6296324......128768496.......2561487246

%C ..26..1414...67676....2342046.....80114311.....2561487246......79687436788

%C ..56..4626..342972...18668994....995928444....49811090624....2422749969094

%C .118.14930.1707597..146171090..12166597450...951678283294...72384911847530

%C .244.47432.8384136.1129426388.146641882796.17942875499666.2134206947210504

%H R. H. Hardin, <a href="/A282885/b282885.txt">Table of n, a(n) for n = 1..264</a>

%F Empirical for column k:

%F k=1: a(n) = 2*a(n-1) +a(n-2) -3*a(n-4) -2*a(n-5) -a(n-6)

%F k=2: [order 10]

%F k=3: [order 22]

%F k=4: [order 42]

%F k=5: [order 86]

%e Some solutions for n=4 k=4

%e ..0..0..1..0. .0..1..0..1. .0..1..1..1. .1..0..1..1. .0..1..0..0

%e ..1..0..1..1. .0..0..0..0. .0..0..0..0. .1..0..0..0. .0..0..0..1

%e ..0..0..0..0. .0..0..1..0. .1..0..0..0. .0..1..1..1. .0..0..1..0

%e ..1..1..0..0. .0..0..1..1. .0..0..0..0. .0..0..0..0. .0..0..1..0

%Y Column 1 is A073778(n-1).

%K nonn,tabl

%O 1,5

%A _R. H. Hardin_, Feb 24 2017