login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216928
Least Lucas-Carmichael number with n prime factors.
5
399, 8855, 588455, 139501439, 3512071871, 199195047359, 14563696180319, 989565001538399, 20576473996736735, 4049149795181043839, 409810997884396741919, 46852073639840281125599, 6414735508880546179805759, 466807799396932243821123839, 41222773167337486494297521279
OFFSET
3,1
COMMENTS
Is this sequence infinite? - Charles R Greathouse IV, Sep 23 2012
a(15) <= 6414735508880546179805759. a(16) <= 466807799396932243821123839. - Donovan Johnson, Sep 26 2012
LINKS
Ed Copeland and Brady Haran, Something special about 399, Numberphile video (2015).
PROG
(PARI)
lucas_carmichael(A, B, k) = A=max(A, vecprod(primes(k+1))\2); (f(m, l, lo, k) = my(list=List()); my(hi=sqrtnint(B\m, k)); if(lo > hi, return(list)); if(k==1, lo=max(lo, ceil(A/m)); my(t=lift(-1/Mod(m, l))); while(t < lo, t += l); forstep(p=t, hi, l, if(isprime(p), my(n=m*p); if((n+1)%(p+1) == 0, listput(list, n)))), forprime(p=lo, hi, if(gcd(m, p+1) == 1, list=concat(list, f(m*p, lcm(l, p+1), p+1, k-1))))); list); vecsort(Vec(f(1, 1, 3, k)));
a(n) = if(n < 3, return()); my(x=vecprod(primes(n+1))\2, y=2*x); while(1, my(v=lucas_carmichael(x, y, n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Feb 24 2023
CROSSREFS
Cf. A006972 (Lucas-Carmichael numbers).
Sequence in context: A166915 A110885 A249408 * A283384 A140892 A115470
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(7)-a(12) from Donovan Johnson, Sep 22 2012
a(13)-a(14) from Donovan Johnson, Sep 26 2012
a(15)-a(16) confirmed and a(17) added by Daniel Suteu, Aug 29 2022
STATUS
approved