Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Feb 24 2023 19:33:23
%S 399,8855,588455,139501439,3512071871,199195047359,14563696180319,
%T 989565001538399,20576473996736735,4049149795181043839,
%U 409810997884396741919,46852073639840281125599,6414735508880546179805759,466807799396932243821123839,41222773167337486494297521279
%N Least Lucas-Carmichael number with n prime factors.
%C Is this sequence infinite? - _Charles R Greathouse IV_, Sep 23 2012
%C a(15) <= 6414735508880546179805759. a(16) <= 466807799396932243821123839. - _Donovan Johnson_, Sep 26 2012
%H Daniel Suteu, <a href="/A216928/b216928.txt">Table of n, a(n) for n = 3..35</a>
%H Ed Copeland and Brady Haran, <a href="https://www.youtube.com/watch?v=yfr3BIk6KFc">Something special about 399</a>, Numberphile video (2015).
%o (PARI)
%o lucas_carmichael(A, B, k) = A=max(A, vecprod(primes(k+1))\2); (f(m, l, lo, k) = my(list=List()); my(hi=sqrtnint(B\m, k)); if(lo > hi, return(list)); if(k==1, lo=max(lo, ceil(A/m)); my(t=lift(-1/Mod(m,l))); while(t < lo, t += l); forstep(p=t, hi, l, if(isprime(p), my(n=m*p); if((n+1)%(p+1) == 0, listput(list, n)))), forprime(p=lo, hi, if(gcd(m, p+1) == 1, list=concat(list, f(m*p, lcm(l, p+1), p+1, k-1))))); list); vecsort(Vec(f(1, 1, 3, k)));
%o a(n) = if(n < 3, return()); my(x=vecprod(primes(n+1))\2,y=2*x); while(1, my(v=lucas_carmichael(x,y,n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ _Daniel Suteu_, Feb 24 2023
%Y Cf. A006972 (Lucas-Carmichael numbers).
%K nonn
%O 3,1
%A _Tim Johannes Ohrtmann_, Sep 20 2012
%E a(7)-a(12) from _Donovan Johnson_, Sep 22 2012
%E a(13)-a(14) from _Donovan Johnson_, Sep 26 2012
%E a(15)-a(16) confirmed and a(17) added by _Daniel Suteu_, Aug 29 2022