|
|
A140898
|
|
Expansion of -x^2/(136*x^2+2*x-1).
|
|
0
|
|
|
0, 1, 2, 140, 552, 20144, 115360, 2970304, 21629568, 447220480, 3836062208, 68494109696, 658692679680, 10632584278016, 110847372992512, 1667726207795200, 18410695142572032, 263632154545291264, 3031118848480378880, 41916210715120369664, 496064584823572267008
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
LINKS
|
Table of n, a(n) for n=1..21.
Index entries for linear recurrences with constant coefficients, signature (2,136).
|
|
FORMULA
|
a(n)= ((1 + sqrt(137))^n - (1 - sqrt(137))^n) / (2*sqrt(137)).
G.f.: -x^2/(136*x^2+2*x-1). [Colin Barker, Jan 02 2013]
|
|
MATHEMATICA
|
a[n_] = ((1 + Sqrt[137])^n - (1 - Sqrt[137])^n)/(2*Sqrt[137]); Table[ExpandAll[a[n]], {n, 0, 30}]
CoefficientList[Series[-x^2/(136*x^2+2*x-1), {x, 0, 30}], x] (* or *) LinearRecurrence[ {2, 136}, {0, 1}, 30] (* Harvey P. Dale, Aug 20 2019 *)
|
|
CROSSREFS
|
Sequence in context: A101232 A093887 A152005 * A220513 A120814 A221601
Adjacent sequences: A140895 A140896 A140897 * A140899 A140900 A140901
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Roger L. Bagula and Gary W. Adamson, Jul 24 2008
|
|
EXTENSIONS
|
New name and more terms from Colin Barker, Jan 02 2013
|
|
STATUS
|
approved
|
|
|
|