login
A261507
Fibonacci-numbered rows of Pascal's triangle. Triangle read by rows: T(n,k)= binomial(Fibonacci(n), k).
1
1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 10, 10, 5, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 13, 78, 286, 715, 1287, 1716, 1716, 1287, 715, 286, 78, 13, 1, 1, 21, 210, 1330, 5985, 20349, 54264, 116280, 203490, 293930, 352716, 352716, 293930, 203490, 116280, 54264, 20349, 5985, 1330, 210, 21, 1
OFFSET
0,7
COMMENTS
Subsequence of A007318.
LINKS
Jean-François Alcover, Table of n, a(n) for n = 0..388 (corrected by N. J. A. Sloane, Jan 18 2019)
FORMULA
T(n, k) = binomial(fibonacci(n), k).
T(n, 1) = fibonacci(n) = A000045(n).
T(n, 2) = A191797(n) for n>3.
EXAMPLE
1,
1, 1,
1, 1,
1, 2, 1,
1, 3, 3, 1,
1, 5, 10, 10, 5, 1,
1, 8, 28, 56, 70, 56, 28, 8, 1,
1, 13, 78, 286, 715, 1287, 1716, 1716, 1287, 715, 286, 78, 13, 1
MATHEMATICA
Table[Binomial[Fibonacci[n], k], {n, 0, 8}, {k, 0, Fibonacci[n]}]//Flatten (* Jean-François Alcover, Nov 12 2015*)
PROG
(PARI) v = vector(101, j, fibonacci(j)); i=0; n=0; while(n<100, for(k=0, n, print1(binomial(n, k), ", ", "")); print(); i=i+1; n=v[i] ; )
KEYWORD
less,nonn,tabf
AUTHOR
STATUS
approved