login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261509
Decimal expansion of -Gamma'''(1).
3
5, 4, 4, 4, 8, 7, 4, 4, 5, 6, 4, 8, 5, 3, 1, 7, 7, 3, 4, 0, 9, 9, 3, 6, 1, 0, 0, 4, 1, 3, 7, 6, 5, 0, 6, 8, 9, 5, 7, 1, 6, 6, 8, 6, 9, 4, 4, 3, 5, 3, 8, 2, 5, 6, 5, 6, 4, 7, 9, 8, 6, 9, 2, 4, 3, 0, 2, 7, 9, 1, 0, 9, 4, 2, 3, 3, 3, 8, 4, 1, 6, 3, 9, 0, 3, 2, 5, 1, 6, 4, 4, 6, 8, 1, 7, 7, 8, 6, 3, 3, 0, 0, 9, 2, 9
OFFSET
1,1
LINKS
Tom M. Apostol, Formulas for higher derivatives of the Riemann zeta function, Mathematics of Computation 44 (1985), p. 223-232.
Eric Weisstein's World of Mathematics, Gamma Function.
Wikipedia, Gamma function.
FORMULA
From Amiram Eldar, Aug 06 2020: (Start)
Equals gamma^3 + gamma*Pi^2/2 + 2*zeta(3).
Equals -Integral_{x=0..oo} exp(-x)*log(x)^3 dx. (End)
EXAMPLE
5.4448744564853177340993610041376506895716686944353825656479...
MATHEMATICA
RealDigits[EulerGamma^3 + (EulerGamma*Pi^2)/2 + 2*Zeta[3], 10, 120][[1]]
PROG
(PARI) default(realprecision, 100); Euler^3 + Euler*Pi^2/2 + 2*zeta(3) \\ G. C. Greubel, Aug 30 2018
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); L:=RiemannZeta(); EulerGamma(R)^3 + (EulerGamma(R)*Pi(R)^2)/2 + 2*Evaluate(L, 3); // G. C. Greubel, Aug 30 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Aug 22 2015
STATUS
approved