login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081855
Decimal expansion of Gamma''(1).
4
1, 9, 7, 8, 1, 1, 1, 9, 9, 0, 6, 5, 5, 9, 4, 5, 1, 1, 0, 7, 9, 0, 7, 9, 1, 3, 0, 3, 0, 0, 1, 2, 6, 9, 4, 1, 5, 8, 7, 8, 3, 6, 7, 0, 4, 1, 4, 5, 6, 4, 2, 8, 1, 8, 0, 8, 8, 6, 3, 9, 1, 5, 6, 7, 3, 7, 2, 2, 7, 3, 2, 6, 4, 0, 9, 8, 9, 5, 7, 5, 4, 3, 4, 9, 4, 8, 9, 2, 1, 6, 9, 2, 5, 1, 4, 7, 4, 6, 8, 2, 6, 0, 7, 0, 4
OFFSET
1,2
COMMENTS
Also the decimal expansion of the Integral_{x>=0} exp(-x)*(log(x))^2 dx. - Robert G. Wilson v, Aug 18 2017
REFERENCES
Bruce C. Berndt, Ramanujan's notebooks Part II, Springer, p. 179.
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.2, p. 31.
LINKS
Tom M. Apostol, Formulas for higher derivatives of the Riemann zeta function, Mathematics of Computation 44 (1985), p. 223-232.
FORMULA
The second derivative of Gamma(x) at x=1 is Gamma^2+zeta(2) = 1.97811199... where Gamma is the Euler constant and zeta(2) = Pi^2/6.
EXAMPLE
1.978111990655945110790791303001269415878367... [corrected by Georg Fischer, Jul 29 2021]
MATHEMATICA
EulerGamma^2 + Zeta[2] // RealDigits[#, 10, 105] & // First (* Jean-François Alcover, Apr 29 2013 *)
RealDigits[ Integrate[ Exp[-x]*Log[x]^2, {x, 0, Infinity}], 10, 111][[1]] (* Robert G. Wilson v, Aug 18 2017 *)
PROG
(PARI) Euler^2+zeta(2) \\ Charles R Greathouse IV, Aug 18 2017
(PARI) intnum(x=0, [oo, 1], exp(-x)*log(x)^2) \\ Charles R Greathouse IV, Aug 18 2017
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); L:=RiemannZeta(); EulerGamma(R)^2 + Evaluate(L, 2); // G. C. Greubel, Aug 29 2018
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Benoit Cloitre, Apr 11 2003
STATUS
approved