login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Gamma''(1).
4

%I #37 Oct 27 2024 09:23:51

%S 1,9,7,8,1,1,1,9,9,0,6,5,5,9,4,5,1,1,0,7,9,0,7,9,1,3,0,3,0,0,1,2,6,9,

%T 4,1,5,8,7,8,3,6,7,0,4,1,4,5,6,4,2,8,1,8,0,8,8,6,3,9,1,5,6,7,3,7,2,2,

%U 7,3,2,6,4,0,9,8,9,5,7,5,4,3,4,9,4,8,9,2,1,6,9,2,5,1,4,7,4,6,8,2,6,0,7,0,4

%N Decimal expansion of Gamma''(1).

%C Also the decimal expansion of the Integral_{x>=0} exp(-x)*(log(x))^2 dx. - _Robert G. Wilson v_, Aug 18 2017

%D Bruce C. Berndt, Ramanujan's notebooks Part II, Springer, p. 179.

%D Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.2, p. 31.

%H G. C. Greubel, <a href="/A081855/b081855.txt">Table of n, a(n) for n = 1..10000</a>

%H Tom M. Apostol, <a href="https://doi.org/10.1090/S0025-5718-1985-0771044-5">Formulas for higher derivatives of the Riemann zeta function</a>, Mathematics of Computation 44 (1985), p. 223-232.

%F The second derivative of Gamma(x) at x=1 is Gamma^2+zeta(2) = 1.97811199... where Gamma is the Euler constant and zeta(2) = Pi^2/6.

%e 1.978111990655945110790791303001269415878367... [corrected by _Georg Fischer_, Jul 29 2021]

%t EulerGamma^2 + Zeta[2] // RealDigits[#, 10, 105] & // First (* _Jean-François Alcover_, Apr 29 2013 *)

%t RealDigits[ Integrate[ Exp[-x]*Log[x]^2, {x, 0, Infinity}], 10, 111][[1]] (* _Robert G. Wilson v_, Aug 18 2017 *)

%o (PARI) Euler^2+zeta(2) \\ _Charles R Greathouse IV_, Aug 18 2017

%o (PARI) intnum(x=0,[oo,1],exp(-x)*log(x)^2) \\ _Charles R Greathouse IV_, Aug 18 2017

%o (Magma) SetDefaultRealField(RealField(100)); R:= RealField(); L:=RiemannZeta(); EulerGamma(R)^2 + Evaluate(L,2); // _G. C. Greubel_, Aug 29 2018

%Y Cf. A001620, A013661, A155969, A261509.

%K cons,nonn

%O 1,2

%A _Benoit Cloitre_, Apr 11 2003