|
|
A081856
|
|
Numbers k such that 2k-1 divides 2^k-1.
|
|
6
|
|
|
1, 2, 8, 128, 228, 648, 1352, 1908, 3240, 4608, 5220, 5976, 11448, 13160, 13920, 21528, 22050, 23760, 23940, 24840, 30960, 31284, 31584, 31968, 32768, 37224, 46092, 46512, 47268, 60480, 65664, 66528, 78540, 78600, 81728, 82800, 84312, 98406, 102672, 103968
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
|
|
LINKS
|
|
|
MAPLE
|
a:= proc(n) option remember; local k;
if n=1 then 1 else for k from 1+a(n-1)
while 2&^k mod(2*k-1)<>1 do od; k fi
end:
|
|
MATHEMATICA
|
terms = 100; Reap[For[n=1; k=1, k <= terms, n++, If[Divisible[2^n-1, 2n-1], Print[k, " ", n]; Sow[n]; k++]]][[2, 1]] (* Jean-François Alcover, Apr 06 2017 *)
Join[{1}, Select[Range[110000], PowerMod[2, #, 2*#-1]==1&]] (* Harvey P. Dale, Jan 19 2019 *)
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,changed
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|