Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Sep 21 2018 13:43:07
%S 1,2,4,14,24,58,124,238,480,922,1764,3238,6008,10794,19292,34166,
%T 59504,103042,176452,299958,505240,845570,1403324,2315118,3794640,
%U 6180370,10009540,16121374,25829512,41171690,65320956,103140062,162149488,253823178,395698276
%N Expansion of Product_{k>=1} (1 + 2*x^k)^k.
%H Alois P. Heinz, <a href="/A261562/b261562.txt">Table of n, a(n) for n = 0..5000</a> (first 2001 terms from Vaclav Kotesovec)
%F G.f.: exp( Sum_{n>=1} x^n/n * Sum_{d|n} -(-2)^d * n^2/d^2 ). - _Paul D. Hanna_, Sep 30 2015
%F a(n) ~ c^(1/6) * exp(3^(2/3)*c^(1/3)*n^(2/3)/2) / (3^(3/4)*sqrt(2*Pi)*n^(2/3)), where c = Pi^2*log(2) + log(2)^3 - 6*polylog(3, -1/2) = 10.00970018379942727227807189532511265744588249928680712064... . - _Vaclav Kotesovec_, Jan 04 2016
%p b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
%p add(2^j*binomial(i, j)*b(n-i*j, i-1), j=0..n/i)))
%p end:
%p a:= n-> b(n$2):
%p seq(a(n), n=0..40); # _Alois P. Heinz_, Sep 21 2018
%t nmax = 50; CoefficientList[Series[Product[(1 + 2*x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]
%t nmax = 50; CoefficientList[Series[Exp[Sum[(-1)^(k+1)*2^k/k*x^k/(1 - x^k)^2, {k, 1, nmax}]], {x, 0, nmax}], x]
%t nmax = 50; s = 1+2*x; Do[s*=Sum[Binomial[k, j]*2^j*x^(j*k), {j, 0, nmax/k}]; s = Take[Expand[s], Min[nmax + 1, Exponent[s, x] + 1]];, {k, 2, nmax}]; CoefficientList[s, x] (* _Vaclav Kotesovec_, Jan 08 2016 *)
%o (PARI) {a(n) = polcoeff( exp( sum(m=1, n, x^m/m * sumdiv(m, d, -(-2)^d * m^2/d^2) ) +x*O(x^n)), n)}
%o for(n=0, 40, print1(a(n), ", ")) \\ _Paul D. Hanna_, Sep 30 2015
%Y Cf. A026007, A032302, A261561, A261563, A266857, A266891.
%K nonn
%O 0,2
%A _Vaclav Kotesovec_, Aug 24 2015