login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266857
Expansion of Product_{k>=1} (1 + 3*x^k)^k.
4
1, 3, 6, 27, 48, 132, 324, 651, 1491, 3078, 6447, 12795, 25839, 50088, 96099, 184491, 343920, 640545, 1173609, 2138403, 3850584, 6882354, 12186336, 21423660, 37421757, 64816608, 111637392, 190976859, 324868530, 549265290, 923904711, 1545406077, 2572326510
OFFSET
0,2
COMMENTS
In general, for m > 0, if g.f. = Product_{k>=1} (1 + m*x^k)^k then a(n) ~ c^(1/6) * exp(3^(2/3) * c^(1/3) * n^(2/3) / 2) / (3^(2/3) * (m+1)^(1/12) * sqrt(2*Pi) * n^(2/3)), where c = Pi^2*log(m) + log(m)^3 - 6*polylog(3, -1/m).
LINKS
FORMULA
a(n) ~ c^(1/6) * exp(3^(2/3) * c^(1/3) * n^(2/3) / 2) / (2^(2/3) * 3^(2/3) * sqrt(Pi) * n^(2/3)), where c = Pi^2*log(3) + log(3)^3 - 6*polylog(3, -1/3) = 14.092743327504459346835224018840792668682349056875722467... .
MATHEMATICA
nmax=50; CoefficientList[Series[Product[(1+3*x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jan 04 2016
STATUS
approved