The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A266857 Expansion of Product_{k>=1} (1 + 3*x^k)^k. 4
 1, 3, 6, 27, 48, 132, 324, 651, 1491, 3078, 6447, 12795, 25839, 50088, 96099, 184491, 343920, 640545, 1173609, 2138403, 3850584, 6882354, 12186336, 21423660, 37421757, 64816608, 111637392, 190976859, 324868530, 549265290, 923904711, 1545406077, 2572326510 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS In general, for m > 0, if g.f. = Product_{k>=1} (1 + m*x^k)^k then a(n) ~ c^(1/6) * exp(3^(2/3) * c^(1/3) * n^(2/3) / 2) / (3^(2/3) * (m+1)^(1/12) * sqrt(2*Pi) * n^(2/3)), where c = Pi^2*log(m) + log(m)^3 - 6*polylog(3, -1/m). LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..2000 FORMULA a(n) ~ c^(1/6) * exp(3^(2/3) * c^(1/3) * n^(2/3) / 2) / (2^(2/3) * 3^(2/3) * sqrt(Pi) * n^(2/3)), where c = Pi^2*log(3) + log(3)^3 - 6*polylog(3, -1/3) = 14.092743327504459346835224018840792668682349056875722467... . MATHEMATICA nmax=50; CoefficientList[Series[Product[(1+3*x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x] CROSSREFS Cf. A026007, A261562, A261565, A261567. Sequence in context: A208665 A256762 A064283 * A014561 A034502 A217725 Adjacent sequences: A266854 A266855 A266856 * A266858 A266859 A266860 KEYWORD nonn AUTHOR Vaclav Kotesovec, Jan 04 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 09:12 EST 2023. Contains 367690 sequences. (Running on oeis4.)