login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090889
Double partial sums of (n * its dyadic valuation).
2
0, 0, 2, 4, 14, 24, 40, 56, 96, 136, 186, 236, 310, 384, 472, 560, 712, 864, 1034, 1204, 1414, 1624, 1856, 2088, 2392, 2696, 3026, 3356, 3742, 4128, 4544, 4960, 5536, 6112, 6722, 7332, 8014, 8696, 9416, 10136, 10976, 11816, 12698, 13580
OFFSET
0,3
COMMENTS
Hwang-Janson-Tsai paper, p. 39: "Note that the recurrence provided on OEIS for A090889 is incorrect (and the generating function misses a factor of 2)." - Michael De Vlieger, Oct 30 2022
LINKS
Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 39.
FORMULA
a(0)=0, a(2n) = 2a(n) + 2a(n-1) + n(n+1)(2n+1)/3, a(2n+1) = 4a(n) + (2/3)*(n+1)(n+2)(n+3).
G.f.: (1/(1-x)^2) * Sum_{k>=0} 2^k*t^2/(1-t^2)^2 where t=x^2^k.
a(n) = A006581(n) + A000292(n-1).
MATHEMATICA
{0}~Join~Accumulate@ Accumulate@ Array[# IntegerExponent[#, 2] &, 43] (* Michael De Vlieger, Oct 30 2022 *)
PROG
(PARI) a(n)=sum(k=1, n, bitand(k, n-k)+k*(n-k))
(PARI) a(n)=if(n<1, 0, if(n%2==0, 2*a(n/2)+2*a(n/2-1)+n/2*(n/2+1)*(n+1)/3, 4*a((n-1)/2)+2/3*((n-1)/2)*((n-1)/2+1)*((n-1)/2+2)))
(PARI) a(n)=sum(l=0, n, sum(k=0, l, k*valuation(k, 2)))
(Python)
def A090889(n): return (sum(k&n-k for k in range(1, n+1>>1))<<1)+(0 if n&1 else n>>1)+n*(n-1)*(n+1)//6 # Chai Wah Wu, May 08 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Feb 13 2004
STATUS
approved