Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Jul 22 2024 03:26:05
%S 0,0,2,4,14,24,40,56,96,136,186,236,310,384,472,560,712,864,1034,1204,
%T 1414,1624,1856,2088,2392,2696,3026,3356,3742,4128,4544,4960,5536,
%U 6112,6722,7332,8014,8696,9416,10136,10976,11816,12698,13580
%N Double partial sums of (n * its dyadic valuation).
%C Hwang-Janson-Tsai paper, p. 39: "Note that the recurrence provided on OEIS for A090889 is incorrect (and the generating function misses a factor of 2)." - _Michael De Vlieger_, Oct 30 2022
%H Michael De Vlieger, <a href="/A090889/b090889.txt">Table of n, a(n) for n = 0..10000</a>
%H Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, <a href="https://arxiv.org/abs/2210.10968">Identities and periodic oscillations of divide-and-conquer recurrences splitting at half</a>, arXiv:2210.10968 [cs.DS], 2022, p. 39.
%F a(0)=0, a(2n) = 2a(n) + 2a(n-1) + n(n+1)(2n+1)/3, a(2n+1) = 4a(n) + (2/3)*(n+1)(n+2)(n+3).
%F G.f.: (1/(1-x)^2) * Sum_{k>=0} 2^k*t^2/(1-t^2)^2 where t=x^2^k.
%F a(n) = A006581(n) + A000292(n-1).
%t {0}~Join~Accumulate@ Accumulate@ Array[# IntegerExponent[#, 2] &, 43] (* _Michael De Vlieger_, Oct 30 2022 *)
%o (PARI) a(n)=sum(k=1,n,bitand(k,n-k)+k*(n-k))
%o (PARI) a(n)=if(n<1,0,if(n%2==0,2*a(n/2)+2*a(n/2-1)+n/2*(n/2+1)*(n+1)/3,4*a((n-1)/2)+2/3*((n-1)/2)*((n-1)/2+1)*((n-1)/2+2)))
%o (PARI) a(n)=sum(l=0,n,sum(k=0,l,k*valuation(k,2)))
%o (Python)
%o def A090889(n): return (sum(k&n-k for k in range(1,n+1>>1))<<1)+(0 if n&1 else n>>1)+n*(n-1)*(n+1)//6 # _Chai Wah Wu_, May 08 2023
%Y Cf. A006581, A000292, A007814.
%K nonn,easy
%O 0,3
%A _Ralf Stephan_, Feb 13 2004