login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191354
Number of lattice paths from (0,0) to (n,n) using steps (1,0), (1,1), (1,2), and (2,1).
4
1, 1, 3, 9, 25, 75, 227, 693, 2139, 6645, 20757, 65139, 205189, 648427, 2054775, 6526841, 20775357, 66251247, 211617131, 676930325, 2168252571, 6953348149, 22322825865, 71735559255, 230735316795, 742773456825, 2392949225565, 7714727440755, 24888317247705, 80341227688095
OFFSET
0,3
LINKS
Steffen Eger, On the Number of Many-to-Many Alignments of N Sequences, arXiv:1511.00622 [math.CO], 2015.
FORMULA
G.f.: 1/sqrt(1-2*x-3*x^2-4*x^3). - Mark van Hoeij, Apr 16 2013
G.f.: Q(0), where Q(k) = 1 + x*(2+3*x+4*x^2)*(4*k+1)/( 4*k+2 - x*(2+3*x+4*x^2)*(4*k+2)*(4*k+3)/(x*(2+3*x+4*x^2)*(4*k+3) + 4*(k+1)/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 14 2013
a(n) = Sum_{k=0..n} (binomial(2*k,k) * Sum_{j=0..k} (binomial(j,n-k-j) *binomial(k,j)*2^(j-k)*3^(-n+k+2*j)*4^(n-k-2*j))). - Vladimir Kruchinin, Feb 27 2016
D-finite with recurrence: +(n)*a(n) +(-2*n+1)*a(n-1) +3*(-n+1)*a(n-2) +2*(-2*n+3)*a(n-3)=0. - R. J. Mathar, Jan 14 2020
MATHEMATICA
a[n_]:= Sum[Binomial[2k, k]*Sum[Binomial[j, n-k-j]*Binomial[k, j]*2^(j-k) *3^(-n+k+2j)*4^(n-k-2j), {j, 0, k}], {k, 0, n}];
Array[a, 30, 0] (* Jean-François Alcover, Jul 21 2018, after Vladimir Kruchinin *)
CoefficientList[Series[1/Sqrt[1-2*x-3*x^2-4*x^3], {x, 0, 30}], x] (* G. C. Greubel, Feb 18 2019 *)
PROG
(PARI) /* same as in A092566 but use */
steps=[[1, 0], [1, 1], [1, 2], [2, 1]];
/* Joerg Arndt, Jun 30 2011 */
(PARI) my(x='x+O('x^30)); Vec(1/sqrt(1-2*x-3*x^2-4*x^3)) \\ G. C. Greubel, Feb 18 2019
(Maxima)
a(n):=sum(binomial(2*k, k) * sum(binomial(j, n-k-j) * 2^(j-k) * binomial(k, j) * 3^(-n+k+2*j) * 4^(n-k-2*j), j, 0, k), k, 0, n); /* Vladimir Kruchinin, Feb 27 2016 */
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!( 1/Sqrt(1-2*x-3*x^2-4*x^3) )); // G. C. Greubel, Feb 18 2019
(Sage) (1/sqrt(1-2*x-3*x^2-4*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 18 2019
KEYWORD
nonn
AUTHOR
Joerg Arndt, Jun 30 2011
STATUS
approved