login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of lattice paths from (0,0) to (n,n) using steps (1,0), (1,1), (1,2), and (2,1).
4

%I #41 Sep 08 2022 08:45:57

%S 1,1,3,9,25,75,227,693,2139,6645,20757,65139,205189,648427,2054775,

%T 6526841,20775357,66251247,211617131,676930325,2168252571,6953348149,

%U 22322825865,71735559255,230735316795,742773456825,2392949225565,7714727440755,24888317247705,80341227688095

%N Number of lattice paths from (0,0) to (n,n) using steps (1,0), (1,1), (1,2), and (2,1).

%H G. C. Greubel, <a href="/A191354/b191354.txt">Table of n, a(n) for n = 0..1000</a>

%H Steffen Eger, <a href="http://arxiv.org/abs/1511.00622">On the Number of Many-to-Many Alignments of N Sequences</a>, arXiv:1511.00622 [math.CO], 2015.

%F G.f.: 1/sqrt(1-2*x-3*x^2-4*x^3). - _Mark van Hoeij_, Apr 16 2013

%F G.f.: Q(0), where Q(k) = 1 + x*(2+3*x+4*x^2)*(4*k+1)/( 4*k+2 - x*(2+3*x+4*x^2)*(4*k+2)*(4*k+3)/(x*(2+3*x+4*x^2)*(4*k+3) + 4*(k+1)/Q(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Sep 14 2013

%F a(n) = Sum_{k=0..n} (binomial(2*k,k) * Sum_{j=0..k} (binomial(j,n-k-j) *binomial(k,j)*2^(j-k)*3^(-n+k+2*j)*4^(n-k-2*j))). - _Vladimir Kruchinin_, Feb 27 2016

%F D-finite with recurrence: +(n)*a(n) +(-2*n+1)*a(n-1) +3*(-n+1)*a(n-2) +2*(-2*n+3)*a(n-3)=0. - _R. J. Mathar_, Jan 14 2020

%t a[n_]:= Sum[Binomial[2k, k]*Sum[Binomial[j, n-k-j]*Binomial[k, j]*2^(j-k) *3^(-n+k+2j)*4^(n-k-2j), {j, 0, k}], {k, 0, n}];

%t Array[a, 30, 0] (* _Jean-François Alcover_, Jul 21 2018, after _Vladimir Kruchinin_ *)

%t CoefficientList[Series[1/Sqrt[1-2*x-3*x^2-4*x^3], {x, 0, 30}], x] (* _G. C. Greubel_, Feb 18 2019 *)

%o (PARI) /* same as in A092566 but use */

%o steps=[[1,0], [1,1], [1,2], [2,1]];

%o /* _Joerg Arndt_, Jun 30 2011 */

%o (PARI) my(x='x+O('x^30)); Vec(1/sqrt(1-2*x-3*x^2-4*x^3)) \\ _G. C. Greubel_, Feb 18 2019

%o (Maxima)

%o a(n):=sum(binomial(2*k,k) * sum(binomial(j,n-k-j) * 2^(j-k) * binomial(k,j) * 3^(-n+k+2*j) * 4^(n-k-2*j),j,0,k),k,0,n); /* _Vladimir Kruchinin_, Feb 27 2016 */

%o (Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!( 1/Sqrt(1-2*x-3*x^2-4*x^3) )); // _G. C. Greubel_, Feb 18 2019

%o (Sage) (1/sqrt(1-2*x-3*x^2-4*x^3)).series(x, 30).coefficients(x, sparse=False) # _G. C. Greubel_, Feb 18 2019

%Y Cf. A001850, A026641, A036355, A137644, A192364, A192365, A192369.

%K nonn

%O 0,3

%A _Joerg Arndt_, Jun 30 2011