login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273948
Odd prime factors of generalized Fermat numbers of the form 7^(2^m) + 1 with m >= 0.
8
5, 17, 257, 353, 769, 1201, 12289, 13313, 35969, 65537, 114689, 163841, 169553, 7699649, 9379841, 11886593, 28667393, 64749569, 70254593, 134818753, 197231873, 4643094529, 19847446529, 47072139617, 206158430209, 452850614273, 531968664833, 943558259713
OFFSET
1,1
COMMENTS
Odd primes p other than 3 such that the multiplicative order of 7 (mod p) is a power of 2.
From Robert Israel, Jun 16 2016: (Start)
If p is in the sequence, then for each m either p | 7^(2^k)+1 for some k < m or 2^m | p-1. Thus all members except 5, 17, 353, 1201, 169553, 7699649, 134818753, 47072139617 are congruent to 1 mod 2^7.
The intersection of this sequence and A019337 is A019434 minus {3}. (End)
REFERENCES
Hans Riesel, Common prime factors of the numbers A_n=a^(2^n)+1, BIT 9 (1969), pp. 264-269.
LINKS
Arkadiusz Wesolowski, Table of n, a(n) for n = 1..34
Anders Björn and Hans Riesel, Factors of generalized Fermat numbers, Math. Comp. 67 (1998), no. 221, pp. 441-446.
Anders Björn and Hans Riesel, Table errata to “Factors of generalized Fermat numbers”, Math. Comp. 74 (2005), no. 252, p. 2099.
Anders Björn and Hans Riesel, Table errata 2 to "Factors of generalized Fermat numbers", Math. Comp. 80 (2011), pp. 1865-1866.
Harvey Dubner and Wilfrid Keller, Factors of Generalized Fermat Numbers, Math. Comp. 64 (1995), no. 209, pp. 397-405.
MAPLE
filter:= proc(t)
if not isprime(t) then return false fi;
7 &^ (2^padic:-ordp(t-1, 2)) mod t = 1
end proc:
select(filter, [seq(i, i=5..10^6, 2)]); # Robert Israel, Jun 16 2016
MATHEMATICA
Select[Prime@Range[3, 10^5], IntegerQ@Log[2, MultiplicativeOrder[7, #]] &]
CROSSREFS
Cf. A023394, A072982, A078304, A273945 (base 3), A273946 (base 5), A273947 (base 6), A273949 (base 11), A273950 (base 12).
Sequence in context: A077718 A235461 A271660 * A271657 A273999 A222008
KEYWORD
nonn
AUTHOR
STATUS
approved