Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Jun 16 2016 22:42:00
%S 5,17,257,353,769,1201,12289,13313,35969,65537,114689,163841,169553,
%T 7699649,9379841,11886593,28667393,64749569,70254593,134818753,
%U 197231873,4643094529,19847446529,47072139617,206158430209,452850614273,531968664833,943558259713
%N Odd prime factors of generalized Fermat numbers of the form 7^(2^m) + 1 with m >= 0.
%C Odd primes p other than 3 such that the multiplicative order of 7 (mod p) is a power of 2.
%C From _Robert Israel_, Jun 16 2016: (Start)
%C If p is in the sequence, then for each m either p | 7^(2^k)+1 for some k < m or 2^m | p-1. Thus all members except 5, 17, 353, 1201, 169553, 7699649, 134818753, 47072139617 are congruent to 1 mod 2^7.
%C The intersection of this sequence and A019337 is A019434 minus {3}. (End)
%D Hans Riesel, Common prime factors of the numbers A_n=a^(2^n)+1, BIT 9 (1969), pp. 264-269.
%H Arkadiusz Wesolowski, <a href="/A273948/b273948.txt">Table of n, a(n) for n = 1..34</a>
%H Anders Björn and Hans Riesel, <a href="http://dx.doi.org/10.1090/S0025-5718-98-00891-6">Factors of generalized Fermat numbers</a>, Math. Comp. 67 (1998), no. 221, pp. 441-446.
%H Anders Björn and Hans Riesel, <a href="http://dx.doi.org/10.1090/S0025-5718-05-01816-8">Table errata to “Factors of generalized Fermat numbers”</a>, Math. Comp. 74 (2005), no. 252, p. 2099.
%H Anders Björn and Hans Riesel, <a href="http://dx.doi.org/10.1090/S0025-5718-10-02371-9">Table errata 2 to "Factors of generalized Fermat numbers"</a>, Math. Comp. 80 (2011), pp. 1865-1866.
%H Harvey Dubner and Wilfrid Keller, <a href="http://dx.doi.org/10.1090/S0025-5718-1995-1270618-1">Factors of Generalized Fermat Numbers</a>, Math. Comp. 64 (1995), no. 209, pp. 397-405.
%H OEIS Wiki, <a href="/wiki/Generalized_Fermat_numbers">Generalized Fermat numbers</a>
%p filter:= proc(t)
%p if not isprime(t) then return false fi;
%p 7 &^ (2^padic:-ordp(t-1,2)) mod t = 1
%p end proc:
%p select(filter, [seq(i,i=5..10^6,2)]); # _Robert Israel_, Jun 16 2016
%t Select[Prime@Range[3, 10^5], IntegerQ@Log[2, MultiplicativeOrder[7, #]] &]
%Y Cf. A023394, A072982, A078304, A273945 (base 3), A273946 (base 5), A273947 (base 6), A273949 (base 11), A273950 (base 12).
%K nonn
%O 1,1
%A _Arkadiusz Wesolowski_, Jun 05 2016