login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091924
Primes such that their decimal representations interpreted in base 11 are also prime.
71
2, 3, 5, 7, 29, 43, 61, 67, 89, 139, 193, 197, 199, 227, 263, 269, 281, 331, 353, 373, 379, 467, 571, 601, 607, 643, 733, 797, 809, 821, 827, 887, 919, 937, 1033, 1039, 1093, 1129, 1231, 1237, 1259, 1277, 1303, 1327, 1381, 1451, 1453, 1459, 1583
OFFSET
1,1
COMMENTS
See A090711 for a similar sequence whose definition works "in the opposite direction". - M. F. Hasler, Jan 03 2014
LINKS
FORMULA
A090862(A049084(a(n))) > 11 for n>4.
EXAMPLE
A000040(10)=29 in base 11 is 2*11^1+9*11^0=31 prime, therefore 29 is a term.
MAPLE
filter:= proc(n) local L;
if not isprime(n) then return false fi;
L:= convert(n, base, 10);
isprime(add(L[i]*11^(i-1), i=1..nops(L)))
end proc:
select(filter, [2, seq(i, i=3..10000, 2)]); # Robert Israel, Jan 28 2018
MATHEMATICA
Select[Prime@ Range@ 250, PrimeQ@ FromDigits[IntegerDigits@ #, 11] &] (* Michael De Vlieger, Aug 29 2015 *)
PROG
(PARI) is(p, b=11)={my(d=digits(p)); isprime(vector(#d, i, b^(#d-i))*d~)&&isprime(p)} \\ M. F. Hasler, Jan 03 2014
(Magma) [n:n in PrimesUpTo(1600)| IsPrime(Seqint(Intseq(n), 11))]; // Marius A. Burtea, Jun 30 2019
CROSSREFS
Cf. A091923.
Sequence in context: A332582 A019372 A117299 * A358382 A069108 A156604
KEYWORD
nonn,base
AUTHOR
Reinhard Zumkeller, Feb 13 2004
EXTENSIONS
Corrected by Zak Seidov, Feb 25 2004
STATUS
approved