login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A090711
Primes whose base-11 expansion is a (valid) decimal expansion of a prime.
2
2, 3, 5, 7, 31, 47, 67, 73, 97, 163, 223, 227, 229, 271, 311, 317, 331, 397, 421, 443, 449, 557, 683, 727, 733, 773, 883, 953, 977, 991, 997, 1063, 1109, 1129, 1367, 1373, 1433, 1483, 1607, 1613, 1637, 1657, 1697, 1723, 1783, 1871, 1873, 1879, 2027, 2203, 2269
OFFSET
1,1
COMMENTS
See A091924 for the sequence whose definition works "the other way round": Actually, the base-11 representation of the terms of this sequence here. - M. F. Hasler, Jan 03 2014
LINKS
EXAMPLE
The prime p = 31 is written 29 in base 11, and 29 read in base 10 is again a prime. So 31 is a term.
MATHEMATICA
b11pQ[n_]:=Module[{d=IntegerDigits[n, 11]}, Max[d]<10&&PrimeQ[FromDigits[ d]]]; Select[Prime[Range[400]], b11pQ] (* Harvey P. Dale, Apr 17 2018 *)
PROG
(PARI) is(p, b=10, c=11)=vecmax(d=digits(p, c))<b&&isprime(vector(#d, i, b^(#d-i))*d~)&&isprime(p) \\ M. F. Hasler, Jan 05 2014
CROSSREFS
Cf. A090712.
Sequence in context: A245064 A052014 A236255 * A067907 A289759 A175611
KEYWORD
base,nonn
AUTHOR
Cino Hilliard, Jan 18 2004
EXTENSIONS
Edited by N. J. A. Sloane, Feb 07 2007, and by M. F. Hasler, Jan 03 2014
STATUS
approved