login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262841
Number of irreducible polynomials occurring as the first component of a vertex in the Fibonacci zero tree, generated as in Comments.
3
0, 0, 1, 2, 3, 5, 8, 11, 21, 28, 54, 68, 135, 183, 360, 470, 948, 1234, 2479, 3294, 6531, 8713, 17120, 23200
OFFSET
0,4
COMMENTS
The tree T, which we call the Fibonacci zero tree, is generated by these rules: (0, 0) is in T, and if (0, h) is in T, then (0, h + 1) is in T, and if (k, 0) is in T, then (0, k*x) is in T. The number of vertices (f(x),g(x)) in the n-th generation of T is F(n+1), where F = A000045, the Fibonacci numbers, for n >= 0.
The number of irreducible polynomials occurring as the second component of a vertex in the tree T is a(n-1) for n >= 1.
EXAMPLE
First few generations:
g(0) = {(0,0)}
g(1) = {(0,2), (1,0)}
g(2) = {(0,3), (2,0), (0,x)}
g(3) = {(0,4), (3,0), (0,2x), (0,1+x), (x,0)}
g(4) = {(0,5), (4,0), (0,3x), (0,1+2x), (2x,0), (0,2+x), (1+x,0), (0,x^2)}
MATHEMATICA
z = 20; g = {{{0, 0}}};
Do[AppendTo[g, DeleteDuplicates[Partition[Flatten[Join[g, Map[# /. {{0, k_} -> {{0, k + 1}, {k, 0}}, {k_, 0} -> {0, x*k}} &, g]]], 2]]], {z}]
t = Table[Drop[g[[k + 1]], Length[g[[k]]]], {k, Length[g] - 1}];
Map[Length, t] (* Fibonacci numbers *)
Map[Count[IrreduciblePolynomialQ[#], {_, True}] &, t]
(* Peter J. C. Moses, Oct 19 2015 *)
CROSSREFS
Sequence in context: A265741 A254351 A346116 * A332070 A334741 A259973
KEYWORD
nonn,more
AUTHOR
Clark Kimberling, Nov 24 2015
STATUS
approved