login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A259973 Numbers n such that sigma(n) + product of divisors of n is prime. 2
1, 2, 3, 5, 8, 11, 23, 27, 29, 32, 41, 50, 53, 57, 83, 85, 89, 111, 113, 128, 131, 161, 173, 179, 191, 215, 233, 237, 239, 245, 251, 265, 275, 281, 293, 319, 355, 359, 365, 391, 413, 419, 431, 437, 443, 453, 481, 485, 491, 493, 505, 509, 511, 535, 589, 593, 603 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

If p is prime, then (sigma(p) + product of divisors of p) = 2*p+1. So the subsequence of primes gives the Sophie Germain primes: A005384. - Michel Marcus, Jul 16 2015

LINKS

K. D. Bajpai, Table of n, a(n) for n = 1..10000

EXAMPLE

a(5) = 8; divisors(8) = {1,2,4,8}; sum = 1+2+4+8 = 15; product = 1*2*4*8 = 64; 15 + 64 = 79, which is prime.

a(8) = 27; divisors(27) = {1,3,9,27}; sum = 1+3+9+27 = 40; product = 1*3*9*27 = 729; 40+729 = 769, which is prime.

MATHEMATICA

Select[Range[2000], PrimeQ[DivisorSigma[1, #] + Times@@Divisors[#]] &]

PROG

(MAGMA) [n: n in[1..1000] | IsPrime(&*Divisors(n) + SumOfDivisors(n))]

(PARI) for(n=1, 1000, d=divisors(n); k=sigma(n) + prod(i=1, #d, d[i]); if(isprime(k), print1(n, ", ")));

CROSSREFS

Cf. A000203, A007955, A005384, A065512, A118369.

Sequence in context: A265741 A254351 A262841 * A092362 A105766 A056695

Adjacent sequences:  A259970 A259971 A259972 * A259974 A259975 A259976

KEYWORD

nonn

AUTHOR

K. D. Bajpai, Jul 15 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 23:01 EST 2018. Contains 318081 sequences. (Running on oeis4.)