login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092362
Number of partitions of n^2 into squares greater than 1.
7
1, 0, 1, 1, 2, 3, 5, 8, 11, 28, 44, 94, 167, 354, 643, 1314, 2412, 4792, 8981, 17374, 32566, 62008, 115702, 217040, 402396, 745795, 1372266, 2517983, 4595652, 8354350, 15125316, 27265107, 48972467, 87584837, 156119631, 277152178, 490437445, 864534950
OFFSET
0,5
COMMENTS
a(n) = A078134(A000290(n)).
LINKS
FORMULA
a(n) ~ exp(3*Pi^(1/3) * Zeta(3/2)^(2/3) * n^(2/3) / 2^(4/3)) * Zeta(3/2)^(4/3) / (2^(11/3) * sqrt(3) * Pi^(5/6) * n^(11/3)). - Vaclav Kotesovec, Apr 10 2017
EXAMPLE
a(6) = 5: 6^2 = 36 = 16+16+4 = 16+4+4+4+4+4 = 9+9+9+9 = 4+4+4+4+4+4+4+4+4.
MAPLE
b:=proc(n, i) option remember; `if`(n=0, 1,
`if`(i<2, 0, b(n, i-1) +`if`(i^2>n, 0, b(n-i^2, i))))
end:
a:= n-> b(n^2, n):
seq(a(n), n=0..50); # Alois P. Heinz, Apr 15 2013
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<2, 0, b[n, i-1] + If[i^2>n, 0, b[n-i^2, i]]]]; a[n_] := b[n^2, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Mar 19 2004
EXTENSIONS
Corrected a(0) and more terms from Alois P. Heinz, Apr 15 2013
STATUS
approved