login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259976
Irregular triangle T(n, k) read by rows (n >= 0, 0 <= k <= A011848(n)): T(n, k) is the number of occurrences of the principal character in the restriction of xi_k to S_(n)^(2).
2
1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 2, 2, 0, 1, 0, 1, 3, 4, 6, 6, 3, 1, 0, 1, 3, 5, 11, 20, 24, 32, 34, 17, 1, 0, 1, 3, 6, 13, 32, 59, 106, 181, 261, 317, 332, 245, 89, 1, 0, 1, 3, 6, 14, 38, 85, 197, 426, 866, 1615, 2743, 4125, 5495, 6318, 6054, 4416, 1637
OFFSET
0,13
COMMENTS
See Merris and Watkins (1983) for precise definition.
LINKS
Russell Merris and William Watkins, Tensors and graphs, SIAM J. Algebraic Discrete Methods 4 (1983), no. 4, 534-547.
Andrey Zabolotskiy, a259976 (implementation in Rust).
FORMULA
From Andrey Zabolotskiy, Aug 28 2018: (Start)
Sum_{ k=0..A011848(n) } T(n,k) * (n*(n-1)/2 - 2*k + 1) = A000088(n).
T(n,k) = A005368(k) for n >= 2*k. (End)
EXAMPLE
The triangle begins:
[0] 1
[1] 1
[2] 1
[3] 1,0,
[4] 1,0,1,1,
[5] 1,0,1,2,2,0,
[6] 1,0,1,3,4,6,6,3,
[7] 1,0,1,3,5,11,20,24,32,34,17
[8] 1,0,1,3,6,13,32,59,106,181,261,317,332,245,89
[9] 1,0,1,3,6,14,38,85,197,426,866,1615,2743,4125,5495,6318,6054,4416,1637
...
PROG
(Sage)
from sage.groups.perm_gps.permgroup_element import make_permgroup_element
for p in range(8):
m = p*(p-1)//2
Sm = SymmetricGroup(m)
denom = factorial(p)
elements = []
for perm in SymmetricGroup(p):
t = perm.tuple()
eperm = []
for v2 in range(p):
for v1 in range(v2):
w1, w2 = sorted([t[v1], t[v2]])
eperm.append((w2-1)*(w2-2)//2+w1)
elements.append(make_permgroup_element(Sm, eperm))
for q in range(m//2+1):
char = SymmetricGroupRepresentation([m-q, q]).to_character()
numer = sum(char(e) for e in elements)
print((p, q), numer//denom)
# Andrey Zabolotskiy, Aug 28 2018
CROSSREFS
Cf. A005368, A000088, A011848. Length of row n is A039823(n-1).
Sequence in context: A376926 A112170 A366475 * A377415 A113685 A049825
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Jul 12 2015
EXTENSIONS
Name edited, terms T(7, 9)-T(7, 10) and rows 0-2, 8, 9 added by Andrey Zabolotskiy, Sep 06 2018
STATUS
approved