login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A262843 Inverse Moebius transform of n^(n-1). 3
1, 3, 10, 67, 626, 7788, 117650, 2097219, 43046731, 1000000628, 25937424602, 743008378540, 23298085122482, 793714773371796, 29192926025391260, 1152921504608944195, 48661191875666868482, 2185911559738739586477, 104127350297911241532842, 5242880000000001000000692, 278218429446951548637314060 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Logarithmic derivative of A262842.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..385

FORMULA

a(n) = Sum{d|n} d^(d-1).

G.f.: Sum_{n>=1} n^(n-1) * x^n/(1 - x^n).

EXAMPLE

O.g.f.: A(x) = x + 3*x^2 + 10*x^3 + 67*x^4 + 626*x^5 + 7788*x^6 +...

where

A(x) = x/(1-x) + 2*x^2/(1-x^2) + 3^2*x^3/(1-x^3) + 4^3*x^4/(1-x^4) + 5^4*x^5/(1-x^5) + 6^5*x^6/(1-x^6) +...+ n^(n-1)* x^n/(1 -x^n) +...

Logarithmic generating function.

L.g.f.: L(x) = x + 3*x^2/2 + 10*x^3/3 + 67*x^4/4 + 626*x^5/5 + 7788*x^6/6 +...

where

exp(L(x)) = 1/( (1-x) * (1-x^2) * (1-x^3)^3 * (1-x^4)^16 * (1-x^5)^125 * (1-x^6)^1296 *...* (1-x^n)^(n^(n-2)) *...).

Explicitly,

exp(L(x)) = 1 + x + 2*x^2 + 5*x^3 + 22*x^4 + 150*x^5 + 1469*x^6 + 18452*x^7 + 282426*x^8 +...+ A262842(n)*x^n ...

MATHEMATICA

a[n_] := DivisorSum[n, #^(#-1) &]; Array[a, 30] (* Jean-Fran├žois Alcover, Dec 23 2015 *)

PROG

(PARI) {a(n)=sumdiv(n, d, d^(d-1))}

for(n=1, 30, print1(a(n), ", "))

(PARI) {a(n)=polcoeff(sum(m=1, n, m^(m-1)*x^m/(1-x^m +x*O(x^n))), n)}

for(n=1, 30, print1(a(n), ", "))

CROSSREFS

Cf. A262842, A062796.

Sequence in context: A217388 A004102 A072638 * A080526 A232213 A143083

Adjacent sequences:  A262840 A262841 A262842 * A262844 A262845 A262846

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Oct 03 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 16 08:42 EST 2018. Contains 318158 sequences. (Running on oeis4.)