login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262842
G.f.: Product_{k>=1} (1 - x^k)^(-k^(k-2)).
2
1, 1, 2, 5, 22, 150, 1469, 18452, 282426, 5088276, 105431378, 2469403421, 64508609896, 1859464257187, 58625171707730, 2006861834895431, 74128128916520263, 2938711927441481562, 124457492116819509679, 5607967808192795374759, 267883606645817181302028, 13522287374792657280601627, 719232962773594118661491002, 40204966834965724305054746851
OFFSET
0,3
FORMULA
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{d|n} d^(d-1) ).
Logarithmic derivative equals A262843, where A262843(n) = Sum_{d|n} d^(d-1).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 22*x^4 + 150*x^5 + 1469*x^6 +...
where
A(x) = 1/((1-x)*(1-x^2)*(1-x^3)^3*(1-x^4)^16*(1-x^5)^125*(1-x^6)^1296*...)
also
log(A(x)) = x + 3*x^2/2 + 10*x^3/3 + 67*x^4/4 + 626*x^5/5 + 7788*x^6/6 + 117650*x^7/7 + 2097219*x^8/8 + 43046731*x^9/9 + 1000000628*x^10/10 +...+ A262843(n)*x^n/n +...
PROG
(PARI) {a(n)=polcoeff(prod(k=1, n, (1 - x^k +x*O(x^n))^(-k^(k-2))), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, sumdiv(m, d, d^d)*x^m/m) +x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A246542 A001437 A067549 * A361331 A342967 A042933
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 03 2015
STATUS
approved