OFFSET
0,3
COMMENTS
A unary-binary tree is one in which the degree of every node is <= 3.
a(n+1) = (a(n)+1)-th triangular numbers = A000217(a(n)+1). a(n+1) = (a(n) + 1) * (a(n) + 2) / 2. a(n+1) = A006894(n+2) - 1. - Jaroslav Krizek, Sep 11 2009
a(n) is the smallest integer that is the sum of n distinct members of the complete sequence A000124. See A204009 for the binary vectors that select the terms from A000124. - Frank M Jackson, Jan 09 2012
FORMULA
a(n+1) = 1 + (a(n)*(a(n)+3))/2.
Conjecture: a(n) = A006894(n+1) - 1. - R. J. Mathar, Apr 23 2007
a(n) := C(a(n-1) + 2, 2), n >= -1. - Zerinvary Lajos, Jun 08 2007
MAPLE
a[ -1]:=0:a[0]:=1:for n from 1 to 50 do a[n]:=binomial(a[n-1]+2, 2) od: seq(a[n], n=-1..9); # Zerinvary Lajos, Jun 08 2007
MATHEMATICA
Clear[a]; a[0] = 0; a[n_] := a[n] = 1 + (a[n-1]*(a[n-1]+3))/2; Table[a[n], {n, 0, 9}] (* Jean-François Alcover, Jan 31 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 02 2002
EXTENSIONS
Edited by Christian G. Bower, Oct 23 2002
STATUS
approved