login
A254351
Numerators of increasingly better rational approximations to log(3)/log(2) with increasing denominators.
3
2, 3, 5, 8, 11, 19, 46, 65, 84, 317, 401, 485, 569, 1054, 13133, 14187, 15241, 16295, 17349, 18403, 19457, 20511, 21565, 22619, 23673, 24727, 50508, 125743, 176251, 301994, 8632083, 8934077, 9236071, 9538065, 9840059, 10142053, 10444047, 10746041, 11048035
OFFSET
1,1
COMMENTS
log(3)/log(2) = 1.5849625... (see A020857) is an irrational number. The fractions (2/1, 3/2, 5/3, 8/5, 11/7, 19/12, 46/29, 65/41, 84/53, 317/200, 401/253, 485/306, 569/359, 1054/665, ...) are a sequence of approximations to log(3)/log(2), where each is an improvement on its predecessors.
Numerators are shown here, the respective denominators are A060528 (and can also be found among the terms of A206788), both of which refer to equal divisions of the octave and good approximations to musical harmonics.
PROG
(Maxima) x:bfloat(log(3)/log(2)), fpprec:100, errold:2, for denominator:1 thru 10000 do (numerator:round(x*denominator), errnew:abs(x-numerator/denominator), if errnew < errold then (errold:errnew, print(numerator)));
CROSSREFS
Cf. A060528 (denominators), A020857, A206788.
Sequence in context: A006258 A177967 A265741 * A346116 A262841 A332070
KEYWORD
nonn,frac
AUTHOR
K. G. Stier, Jan 29 2015
STATUS
approved