login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes q such that 6*q-1 and 6*q+1 are twin primes. Proper subset of A002822.
14

%I #34 Dec 19 2023 15:59:03

%S 2,3,5,7,17,23,47,103,107,137,283,313,347,373,397,443,467,577,593,653,

%T 773,787,907,1033,1117,1423,1433,1613,1823,2027,2063,2137,2153,2203,

%U 2287,2293,2333,2347,2677,2903,3257,3307,3407,3413,3593,3623,3673,3923

%N Primes q such that 6*q-1 and 6*q+1 are twin primes. Proper subset of A002822.

%C Primes in A182521. Also all primes p for which A182481(p)=1. - _Vladimir Shevelev_, May 03 2012

%C Conjecture: a(n) ~ n*log(n)*log(n*log(n))*log(log(n)). - _Carl R. White_, Nov 16 2023

%H David Radcliffe, <a href="/A060212/b060212.txt">Table of n, a(n) for n = 1..10000</a>

%t lst={}; Do[p=Prime[n]; If[PrimeQ[6*p-1] && PrimeQ[6*p+1], AppendTo[lst,p]], {n,100}]; lst (* _Vladimir Joseph Stephan Orlovsky_, Aug 16 2009 *)

%o (PARI) forprime(p=2, 9999, if(isprime(6*p+1) & isprime(6*p-1), print(p))) \\ _David Radcliffe_, Apr 02 2016

%o (Python) from sympy import *; print([p for p in primerange(2,9999) if isprime(6*p-1) and isprime(6*p+1)]) # _David Radcliffe_, Apr 02 2016

%Y Cf. A001359, A002822, A014574, A027856, A058383, A059960, A182481, A182521, A294731.

%K nonn

%O 1,1

%A _Labos Elemer_, Mar 20 2001