login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217260
Expansion of e.g.f. 2*arctan(1+x) - Pi/2.
4
1, -1, 1, 0, -6, 30, -90, 0, 2520, -22680, 113400, 0, -7484400, 97297200, -681080400, 0, 81729648000, -1389404016000, 12504636144000, 0, -2375880867360000, 49893498214560000, -548828480360160000
OFFSET
1,5
LINKS
FORMULA
E.g.f.: 2*arctan(1+x) - Pi/2.
a(n) = n!*(Sum_{i=1..floor(n+1)/2} ((-1)^(n+i)*binomial(n-1, 2*i-2))/(2*i-1))/2^(n-1).
E.g.f. is the series reversion of sec(x) + tan(x) - 1.
From Robert Israel, Jan 17 2017: (Start)
a(n) = (n-1)*a(n-1) - (n-1)*(n-2)*a(n-2)/2.
a(n) = 2^(1-n/2)*(n-1)!*sin(3*Pi*n/4). (End)
MAPLE
seq(2^(1-n/2)*sin(3/4*Pi*n)*(n-1)!, n=1..50); # Robert Israel, Jan 17 2017
MATHEMATICA
Table[2^(1 - n/2)*(n - 1)!*Sin[3*Pi*n/4], {n, 30}] (* Wesley Ivan Hurt, Oct 14 2023 *)
PROG
(Maxima)
a(n):=n!*sum(((-1)^(n+i)*binomial(n-1, 2*i-2))/(2*i-1), i, 1, (n+1)/2)/2^(n-1);
CROSSREFS
Cf. A000111 (e.g.f. sec(x)+tan(x)), A009775.
Sequence in context: A152788 A055112 A094143 * A009775 A297570 A119536
KEYWORD
sign
AUTHOR
Vladimir Kruchinin, Mar 17 2013
STATUS
approved