login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216226
Square array T, read by antidiagonals: T(n,k) = 0 if n-k>=1 or if k-n>=4, T(0,0) = T(0,1) = T(0,2) = T(0,3) = 1, T(n,k) = T(n-1,k) + T(n,k-1).
11
1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 0, 3, 2, 0, 0, 0, 3, 5, 0, 0, 0, 0, 0, 8, 5, 0, 0, 0, 0, 0, 8, 13, 0, 0, 0, 0, 0, 0, 0, 21, 13, 0, 0, 0, 0, 0, 0, 0, 21, 34, 0, 0, 0, 0, 0, 0, 0, 0, 0, 55, 34, 0, 0, 0, 0, 0
OFFSET
0,8
FORMULA
T(n,n) = A000045(2*n-1) = A001519(n).
T(n,n+1) = A000045(2*n+1) = A001519(n+1).
T(n,n+2) = T(n,n+3) = A000045(2*n+2) = A001906(n+1).
Sum_{k, 0<=k<=n} T(n-k,k) = A000045(n+1).
Sum_{k, k>=0} T(n,k) = A000285(2*n+1).
Sum_{n, n>=0} T(n,k) = A000285(2*k-2), k>=2.
EXAMPLE
Square array begins:
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, ... row n=0
0, 1, 2, 3, 3, 0, 0, 0, 0, 0, ... row n=1
0, 0, 2, 5, 8, 8, 0, 0, 0, 0, ... row n=2
0, 0, 0, 5, 13, 21, 21, 0, 0, 0, ... row n=3
0, 0, 0, 0, 13, 34, 55, 55, 0, 0, ... row n=4
0, 0, 0, 0, 0, 34, 89, 144, 144, 0, ... row n=5
...
CROSSREFS
Cf. A000045 (Fibonacci numbers), A000285, A001519, A001906, A068914
Sequence in context: A113503 A082507 A132349 * A123391 A375339 A372603
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Mar 13 2013
STATUS
approved