login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216201
Square array T, read by antidiagonals : T(n,k) = 0 if n-k>=3 or if k-n>=4, T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = 1, T(n,k) = T(n-1,k) + T(n,k-1).
10
1, 1, 1, 1, 2, 1, 1, 3, 3, 0, 0, 4, 6, 3, 0, 0, 4, 10, 9, 0, 0, 0, 0, 14, 19, 9, 0, 0, 0, 0, 14, 33, 28, 0, 0, 0, 0, 0, 0, 47, 61, 28, 0, 0, 0, 0, 0, 0, 47, 108, 89, 0, 0, 0, 0, 0, 0, 0, 0, 155, 197, 89, 0, 0, 0, 0
OFFSET
0,5
REFERENCES
E. Lucas, Théorie des nombres, Tome 1, Albert Blanchard, Paris, 1958, p.89
LINKS
E. Lucas, Théorie des nombres, Tome 1, Jacques Gabay, Paris, 1991, p.89
FORMULA
T(n,n) = A052975(n).
T(n,n+1) = A060557(n).
T(n+1,n) = T(n+2,n) = A094790(n+1).
T(n,n+2) = T(n,n+3) = A094789(n+1).
Sum_{k, 0<=k<=n} T(n-k,k) = (-1)^n*A078038(n).
EXAMPLE
Square array begins:
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n = 0
1, 2, 3, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, ... row n = 1
1, 3, 6, 10, 14, 14, 0, 0, 0, 0, 0, 0, 0, ... row n = 2
0, 3, 9, 19, 33, 47, 47, 0, 0, 0, 0, 0, 0, ... row n = 3
0, 0, 9, 28, 61, 108, 155, 155, 0, 0, 0, 0, 0, ... row n = 4
0, 0, 0, 28, 89, 197, 352, 507, 507, 0, 0, 0, 0, ... row n = 5
0, 0, 0, 0, 89, 286, 638,1147,1652,1652, 0, 0, 0, ... row n = 6
...
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Mar 12 2013
STATUS
approved