This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A216201 Square array T, read by antidiagonals : T(n,k) = 0 if n-k>=3 or if k-n>=4, T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = 1, T(n,k) = T(n-1,k) + T(n,k-1). 10
 1, 1, 1, 1, 2, 1, 1, 3, 3, 0, 0, 4, 6, 3, 0, 0, 4, 10, 9, 0, 0, 0, 0, 14, 19, 9, 0, 0, 0, 0, 14, 33, 28, 0, 0, 0, 0, 0, 0, 47, 61, 28, 0, 0, 0, 0, 0, 0, 47, 108, 89, 0, 0, 0, 0, 0, 0, 0, 0, 155, 197, 89, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 REFERENCES E. Lucas, Théorie des nombres, Tome 1, Albert Blanchard, Paris, 1958, p.89 LINKS E. Lucas, Théorie des nombres, Tome 1, Jacques Gabay, Paris, 1991, p.89 FORMULA T(n,n) = A052975(n). T(n,n+1) = A060557(n). T(n+1,n) = T(n+2,n) = A094790(n+1). T(n,n+2) = T(n,n+3) = A094789(n+1). Sum_{k, 0<=k<=n} T(n-k,k) = (-1)^n*A078038(n). EXAMPLE Square array begins: 1, 1, 1,  1,  0,   0,   0,   0,   0,   0, 0, 0, 0, ... row n = 0 1, 2, 3,  4,  4,   0,   0,   0,   0,   0, 0, 0, 0, ... row n = 1 1, 3, 6, 10, 14,  14,   0,   0,   0,   0, 0, 0, 0, ... row n = 2 0, 3, 9, 19, 33,  47,  47,   0,   0,   0, 0, 0, 0, ... row n = 3 0, 0, 9, 28, 61, 108, 155, 155,   0,   0, 0, 0, 0, ... row n = 4 0, 0, 0, 28, 89, 197, 352, 507, 507,   0, 0, 0, 0, ... row n = 5 0, 0, 0,  0, 89, 286, 638,1147,1652,1652, 0, 0, 0, ... row n = 6 ... CROSSREFS Cf. A052975, A060557, A078038, A095789, A094790 Sequence in context: A122044 A120744 A053423 * A127514 A078802 A216232 Adjacent sequences:  A216198 A216199 A216200 * A216202 A216203 A216204 KEYWORD nonn,tabl AUTHOR Philippe Deléham, Mar 12 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 22:44 EDT 2019. Contains 328291 sequences. (Running on oeis4.)