login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127514
Binomial transform of an infinite lower triangular matrix with mu(n) in the diagonal.
1
1, 1, -1, 1, -2, -1, 1, -3, -3, 0, 1, -4, -6, 0, -1, 1, -5, -10, 0, -5, 1, 1, -6, -15, 0, -15, 6, -1, 1, -7, -21, 0, -35, 21, -7, 0, 1, -8, -28, 0, -70, 56, -28, 0, 0, 1, -9, -36, 0, -126, 126, -84, 0, 0, 1, 1, -10, -45, 0, -210, 252, -210, 0, 0, 10, -1
OFFSET
1,5
COMMENTS
Right border = mu(n).
Row sums = A104688, the binomial transform of mu(n): 1, 0, -2, -5, -10, -18, ...
FORMULA
P * M, as infinite lower triangular matrices. P = Pascal's triangle, M = mu(n) in the main diagonal and the rest zeros.
EXAMPLE
First few rows of the triangle:
1;
1, -1;
1, -2, -1;
1, -3, -3, 0;
1, -4, -6, 0, -1;
1, -5, -10, 0, -5, 1;
...
PROG
(PARI) row(n) = {my(M = matrix(n, n, i, j, if (i==j, moebius(i))), P = matrix(n, n, i, j, binomial(i-1, j-1))); vector(n, k, (P*M)[n, k]); } \\ Michel Marcus, Feb 15 2022
CROSSREFS
Cf. A127512 (M*P).
Sequence in context: A120744 A053423 A216201 * A078802 A216232 A217765
KEYWORD
sign,tabl
AUTHOR
Gary W. Adamson, Jan 17 2007
EXTENSIONS
More terms from Michel Marcus, Feb 15 2022
STATUS
approved