The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A094827 Number of (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < 9 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+1, s(0) = 1, s(2n+1) = 4. 3
 1, 4, 14, 48, 165, 571, 1988, 6953, 24396, 85786, 302104, 1064945, 3756519, 13256712, 46796545, 165225380, 583440086, 2060408640, 7276716445, 25700060995, 90770326604, 320598127113, 1132355884236, 3999522488002 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS In general, a(n) = (2/m)*Sum_{r=1..m-1} sin(r*j*Pi/m)*sin(r*k*Pi/m)*(2*cos(r*Pi/m))^(2n+1) counts (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < m and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+1, s(0) = j, s(2n+1) = k. LINKS Michael De Vlieger, Table of n, a(n) for n = 1..1825 László Németh and László Szalay, Sequences Involving Square Zig-Zag Shapes, J. Int. Seq., Vol. 24 (2021), Article 21.5.2. Index entries for linear recurrences with constant coefficients, signature (7,-15,10,-1). FORMULA a(n) = (2/9)*Sum_{r=1..8} sin(r*Pi/9)*sin(4*r*Pi/9)*(2*cos(r*Pi/9))^(2*n+1). a(n) = 7*a(n-1) - 15*a(n-2) + 10*a(n-3) - a(n-4). G.f.: x*(1-3*x+x^2) / ( (x-1)*(x^3-9*x^2+6*x-1) ). 3*a(n) = A094829(n+2) -2*A094829(n+1) -2*A094829(n)-1. - R. J. Mathar, Nov 14 2019 MATHEMATICA LinearRecurrence[{7, -15, 10, -1}, {1, 4, 14, 48}, 30] (* Harvey P. Dale, Jul 09 2020 *) CROSSREFS Sequence in context: A007070 A204089 A092489 * A094667 A370051 A099376 Adjacent sequences: A094824 A094825 A094826 * A094828 A094829 A094830 KEYWORD nonn,easy AUTHOR Herbert Kociemba, Jun 13 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 08:45 EDT 2024. Contains 372618 sequences. (Running on oeis4.)