login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094256
Expansion of x / ( (x-1)*(x^3 - 9*x^2 + 6*x - 1) ).
10
1, 7, 34, 143, 560, 2108, 7752, 28101, 100947, 360526, 1282735, 4552624, 16131656, 57099056, 201962057, 714012495, 2523515514, 8916942687, 31504028992, 111295205284, 393151913464, 1388758662221, 4905479957435, 17327203698086, 61202661233823, 216176614077600
OFFSET
1,2
COMMENTS
Previous name was: Let M = the 4 X 4 matrix [0 1 0 0 / 0 0 1 0 / 0 0 0 1 / -1 10 -15 7]. Perform M^n * [1 0 0 0] = [p q r s]. Then a(n-3), a(n-2), a(n-1), a(n) = -p, -q, -r, -s respectively.
a(n)/a(n-1) tends to 3.53208888624... = 4*cos^2(Pi/9), which is an eigenvalue of the matrix and a root of the polynomial x^4 - 6x^3 + 15x^2 -10x + 1 = 0 (having roots 4*cos^2(r*Pi/9), with r = 1,2,3,4).
Number of (s(0), s(1), ..., s(2n+4)) such that 0 < s(i) < 9 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+4, s(0) = 1, s(2n+4) = 7. - Herbert Kociemba, Jun 13 2004
From Wolfdieter Lang, Mar 27 2020: (Start)
This sequence, with offset -5, starting with -85, -10, -1, 0, 0, 0, 1, 7, ... appears in the formula for the n-th power of the 4 X 4 tridiagonal matrix given in A332602 as M_4 = matrix([1,1,0,0], [1,2,1,0], [0,1,2,1], [0,0,1,2]): (M_4)^n = a(n-2)*(M_4)^3 + b(n)*(M_4)^2 + c(n)*M_4 - a(n-3)*1_4, for n >= 0, with the 4 X 4 unit Matrix 1_4, b(n) = -15*a(n-3) + 10*a(n-4) - a(n-5), and c(n) = 10*a(n-3) - a(n-4). Proof from the characteristc polynomial of M_4 (see a comment in A332602) and the Cayley-Hamilton theorem.
From the proof that A094829(n+3)/A094829(n+2) -> rho(9)^2 = A332438 for n-> infinitiy, with rho(9) = 2*cos(Pi/9) = A332437 (see a comment in A094829), and a formula given below the same limit is obtained for a(n+1)/a(n) for n -> infinity, as stated in a comment above. (End)
REFERENCES
C. V. Durell and A. Robson, "Advanced Trigonometry", Dover 2003, p. 216.
LINKS
G. Kreweras, Sur les éventails de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #15 (1970), 3-41. [Annotated scanned copy]
László Németh and László Szalay, Sequences Involving Square Zig-Zag Shapes, J. Int. Seq., Vol. 24 (2021), Article 21.5.2.
FORMULA
From Herbert Kociemba, Jun 13 2004: (Start)
a(n) = (2/9)*Sum_{r=1..8} sin(r*Pi/9)*sin(7*r*Pi/9)*(2*cos(r*Pi/9))^(2n+4).
a(n) = 7*a(n-1) - 15*a(n-2) + 10*a(n-3) - a(n-4).
G.f.: x / ( (x-1)*(x^3 - 9*x^2 + 6*x - 1) ). (End)
3*a(n) = 1 - A094829(n+2) + 8*A094829(n+1) - A094829(n). - R. J. Mathar, Jun 29 2012 [offset corrected, and A094829(1) = 0. - Wolfdieter Lang, Mar 27 2020]
a(n) = (1/3)*(1 + 2*A094829(n+1) + 8*A094829(n) - A094829(n-1)), for n >= 1, with A094829(1) and A094829(0) = 0. - Wolfdieter Lang, Mar 27 2020
EXAMPLE
a(2), a(3), a(4), a(5) = 7, 34, 143, 560, since M^5 * [1 0 0 0] = [ -7 -34 -143 -560].
Cayley-Hamilton: (M_4)^5 = a(3)*(M_4)^3 + b(5)*(M_4)^2 + c(5)*M_4 - a(2)*1_4 = 34*(M_4)^3 - 95*(M_4)^2 + 69*M_4 - 7*1_4. - Wolfdieter Lang, Mar 27 2020
MATHEMATICA
Table[ (MatrixPower[{{0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}, {-1, 10, -15, 7}}, n].{-1, 0, 0, 0})[[4]], {n, 24}] (* Robert G. Wilson v, Apr 28 2004 *)
LinearRecurrence[{7, -15, 10, -1}, {1, 7, 34, 143}, 40] (* Vincenzo Librandi, Jul 25 2015 *)
PROG
(Magma) I:=[1, 7, 34, 143]; [n le 4 select I[n] else 7*Self(n-1) - 15*Self(n-2) + 10*Self(n-3) - Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jul 25 2015
(PARI) Vec(x / ( (x-1)*(x^3-9*x^2+6*x-1) ) + O(x^30)) \\ Michel Marcus, Jul 25 2015
CROSSREFS
a(n) = A005023(n-1), n > 1. - R. J. Mathar, Sep 05 2008
Sequence in context: A137747 A273722 A005023 * A094891 A306376 A192803
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Apr 25 2004
EXTENSIONS
More terms from Robert G. Wilson v, Apr 28 2004
a(25)-a(26) from Vincenzo Librandi, Jul 25 2015
New name (using g.f. from Herbert Kociemba) from Joerg Arndt, Jul 25 2015
STATUS
approved