Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #47 Sep 08 2022 08:45:13
%S 1,7,34,143,560,2108,7752,28101,100947,360526,1282735,4552624,
%T 16131656,57099056,201962057,714012495,2523515514,8916942687,
%U 31504028992,111295205284,393151913464,1388758662221,4905479957435,17327203698086,61202661233823,216176614077600
%N Expansion of x / ( (x-1)*(x^3 - 9*x^2 + 6*x - 1) ).
%C Previous name was: Let M = the 4 X 4 matrix [0 1 0 0 / 0 0 1 0 / 0 0 0 1 / -1 10 -15 7]. Perform M^n * [1 0 0 0] = [p q r s]. Then a(n-3), a(n-2), a(n-1), a(n) = -p, -q, -r, -s respectively.
%C a(n)/a(n-1) tends to 3.53208888624... = 4*cos^2(Pi/9), which is an eigenvalue of the matrix and a root of the polynomial x^4 - 6x^3 + 15x^2 -10x + 1 = 0 (having roots 4*cos^2(r*Pi/9), with r = 1,2,3,4).
%C Number of (s(0), s(1), ..., s(2n+4)) such that 0 < s(i) < 9 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+4, s(0) = 1, s(2n+4) = 7. - _Herbert Kociemba_, Jun 13 2004
%C From _Wolfdieter Lang_, Mar 27 2020: (Start)
%C This sequence, with offset -5, starting with -85, -10, -1, 0, 0, 0, 1, 7, ... appears in the formula for the n-th power of the 4 X 4 tridiagonal matrix given in A332602 as M_4 = matrix([1,1,0,0], [1,2,1,0], [0,1,2,1], [0,0,1,2]): (M_4)^n = a(n-2)*(M_4)^3 + b(n)*(M_4)^2 + c(n)*M_4 - a(n-3)*1_4, for n >= 0, with the 4 X 4 unit Matrix 1_4, b(n) = -15*a(n-3) + 10*a(n-4) - a(n-5), and c(n) = 10*a(n-3) - a(n-4). Proof from the characteristc polynomial of M_4 (see a comment in A332602) and the Cayley-Hamilton theorem.
%C From the proof that A094829(n+3)/A094829(n+2) -> rho(9)^2 = A332438 for n-> infinitiy, with rho(9) = 2*cos(Pi/9) = A332437 (see a comment in A094829), and a formula given below the same limit is obtained for a(n+1)/a(n) for n -> infinity, as stated in a comment above. (End)
%D C. V. Durell and A. Robson, "Advanced Trigonometry", Dover 2003, p. 216.
%H Michael De Vlieger, <a href="/A094256/b094256.txt">Table of n, a(n) for n = 1..1824</a>
%H G. Kreweras, <a href="/A000108/a000108_1.pdf">Sur les éventails de segments</a>, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #15 (1970), 3-41. [Annotated scanned copy]
%H László Németh and László Szalay, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL24/Nemeth/nemeth8.html">Sequences Involving Square Zig-Zag Shapes</a>, J. Int. Seq., Vol. 24 (2021), Article 21.5.2.
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (7,-15,10,-1).
%F From _Herbert Kociemba_, Jun 13 2004: (Start)
%F a(n) = (2/9)*Sum_{r=1..8} sin(r*Pi/9)*sin(7*r*Pi/9)*(2*cos(r*Pi/9))^(2n+4).
%F a(n) = 7*a(n-1) - 15*a(n-2) + 10*a(n-3) - a(n-4).
%F G.f.: x / ( (x-1)*(x^3 - 9*x^2 + 6*x - 1) ). (End)
%F 3*a(n) = 1 - A094829(n+2) + 8*A094829(n+1) - A094829(n). - _R. J. Mathar_, Jun 29 2012 [offset corrected, and A094829(1) = 0. - _Wolfdieter Lang_, Mar 27 2020]
%F a(n) = (1/3)*(1 + 2*A094829(n+1) + 8*A094829(n) - A094829(n-1)), for n >= 1, with A094829(1) and A094829(0) = 0. - _Wolfdieter Lang_, Mar 27 2020
%e a(2), a(3), a(4), a(5) = 7, 34, 143, 560, since M^5 * [1 0 0 0] = [ -7 -34 -143 -560].
%e Cayley-Hamilton: (M_4)^5 = a(3)*(M_4)^3 + b(5)*(M_4)^2 + c(5)*M_4 - a(2)*1_4 = 34*(M_4)^3 - 95*(M_4)^2 + 69*M_4 - 7*1_4. - _Wolfdieter Lang_, Mar 27 2020
%t Table[ (MatrixPower[{{0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}, {-1, 10, -15, 7}}, n].{-1, 0, 0, 0})[[4]], {n, 24}] (* _Robert G. Wilson v_, Apr 28 2004 *)
%t LinearRecurrence[{7, -15, 10, -1}, {1, 7, 34, 143}, 40] (* _Vincenzo Librandi_, Jul 25 2015 *)
%o (Magma) I:=[1,7,34,143]; [n le 4 select I[n] else 7*Self(n-1) - 15*Self(n-2) + 10*Self(n-3) - Self(n-4): n in [1..30]]; // _Vincenzo Librandi_, Jul 25 2015
%o (PARI) Vec(x / ( (x-1)*(x^3-9*x^2+6*x-1) ) + O(x^30)) \\ _Michel Marcus_, Jul 25 2015
%Y a(n) = A005023(n-1), n > 1. - _R. J. Mathar_, Sep 05 2008
%Y Cf. A080938, A094829, A332602, A332437, A332438.
%K nonn,easy
%O 1,2
%A _Gary W. Adamson_, Apr 25 2004
%E More terms from _Robert G. Wilson v_, Apr 28 2004
%E a(25)-a(26) from _Vincenzo Librandi_, Jul 25 2015
%E New name (using g.f. from _Herbert Kociemba_) from _Joerg Arndt_, Jul 25 2015