login
A094259
Expansion of g.f.: (1-5*x)/((1-6*x)*(1-x)^2).
2
1, 3, 11, 55, 315, 1871, 11203, 67191, 403115, 2418655, 14511891, 87071303, 522427771, 3134566575, 18807399395, 112844396311, 677066377803, 4062398266751, 24374389600435, 146246337602535, 877478025615131, 5264868153690703, 31589208922144131, 189535253532864695
OFFSET
0,2
FORMULA
a(n) = (6^(n+1) + 20*n + 19)/25.
E.g.f.: (1/25)*(6*exp(6*x) + (19 + 20*x)*exp(x)). - G. C. Greubel, Aug 18 2023
MATHEMATICA
LinearRecurrence[{8, -13, 6}, {1, 3, 11}, 41] (* G. C. Greubel, Aug 18 2023 *)
PROG
(Magma) [(6^(n+1) +20*n +19)/25: n in [0..40]]; // G. C. Greubel, Aug 18 2023
(SageMath) [(6^(n+1) +20*n +19)/25 for n in range(41)] # G. C. Greubel, Aug 18 2023
CROSSREFS
Cf. A094195.
A row of A094250.
Sequence in context: A266027 A306177 A377965 * A091845 A020061 A370514
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 02 2004
STATUS
approved