OFFSET
0,3
LINKS
G. C. Greubel, Antidiagonals n = 0..50, flattened
FORMULA
A(n, k) = ((n+2)^(k+1) + (k+1)*n*(n+1) - 1)/(n+1)^2 (array).
T(n, k) = ((n-k+2)^(k+1) + (k+1)*(n-k)*(n-k+1) - 1)/(n-k+1)^2 (antidiagonals).
G.f. for row n: (1-(n+1)*x)/((1-(n+2)*x)*(1-x)^2).
EXAMPLE
Array, A(n, k), begins:
1, 3, 7, 15, 31, 63, 127, 255, 511, ... A000225;
1, 3, 8, 22, 63, 185, 550, 1644, 4925, ... A047926;
1, 3, 9, 31, 117, 459, 1825, 7287, 29133, ... A073724;
1, 3, 10, 42, 199, 981, 4888, 24420, 122077, ... A094195;
1, 3, 11, 55, 315, 1871, 11203, 67191, 403115, ... A094259;
1, 3, 12, 70, 471, 3273, 22882, 160140, 1120941, ...
Antidiagonals, T(n, k), begins as:
1;
1, 3;
1, 3, 7;
1, 3, 8, 15;
1, 3, 9, 22, 31;
1, 3, 10, 31, 63, 63;
1, 3, 11, 42, 117, 185, 127;
1, 3, 12, 55, 199, 459, 550, 255;
1, 3, 13, 70, 315, 981, 1825, 1644, 511;
1, 3, 14, 87, 471, 1871, 4888, 7287, 4925, 1023;
MATHEMATICA
A094250[n_, k_]:= ((n-k+2)^(k+1) + (k+1)*(n-k)*(n-k+1) - 1)/(n-k+1)^2;
Table[A094250[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Aug 18 2023 *)
PROG
(Magma)
A094250:= func< n, k | ((n-k+2)^(k+1) + (k+1)*(n-k)*(n-k+1) - 1)/(n-k+1)^2 >;
[A094250(n, k): k in [0..n], n in [0..15]]; // G. C. Greubel, Aug 18 2023
(SageMath)
def A094250(n, k): return ((n-k+2)^(k+1) + (k+1)*(n-k)*(n-k+1) - 1)/(n-k+1)^2
flatten([[A094250(n, k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Aug 18 2023
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jun 02 2004
STATUS
approved