login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094195
Expansion of g.f.: (1-4*x)/((1-5*x)*(1-x)^2).
4
1, 3, 10, 42, 199, 981, 4888, 24420, 122077, 610359, 3051766, 15258798, 76293955, 381469737, 1907348644, 9536743176, 47683715833, 238418579115, 1192092895522, 5960464477554, 29802322387711, 149011611938493, 745058059692400, 3725290298461932, 18626451492309589
OFFSET
0,2
COMMENTS
An approximation to A091843.
LINKS
F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence, J. Integer Sequences, Vol. 10 (2007), #07.1.2.
F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence [pdf, ps].
FORMULA
a(n) = (5^(n+1) + 12*n + 11)/16.
a(n) = 7*a(n-1) - 11*a(n-2) + 5*a(n-3), with a(0)=1, a(1)=3, a(2)=10. - Harvey P. Dale, Dec 31 2011
E.g.f.: (1/16)*(5*exp(5*x) + (11 + 12*x)*exp(x)). - G. C. Greubel, Aug 18 2023
MATHEMATICA
CoefficientList[Series[(1-4x)/((1-5x)(1-x)^2), {x, 0, 30}], x] (* or *) LinearRecurrence[{7, -11, 5}, {1, 3, 10}, 30] (* Harvey P. Dale, Dec 31 2011 *)
PROG
(Magma) [(5^(n+1) +12*n +11)/16: n in [0..40]]; // G. C. Greubel, Aug 18 2023
(SageMath) [(5^(n+1) +12*n +11)/16 for n in range(41)] # G. C. Greubel, Aug 18 2023
CROSSREFS
A row of A094250.
Sequence in context: A074511 A000249 A107594 * A091843 A361955 A300632
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 01 2004
STATUS
approved