login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000249
Nearest integer to modified Bessel function K_n(5).
(Formerly M2859 N1150)
1
0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 10, 42, 193, 966, 5215, 30170, 186234, 1222065, 8496274, 62395234, 482700052, 3923995651, 33444263516, 298233514595, 2777192597789, 26959282453367, 272370017131462, 2859607460620573, 31156130591833647, 351808270089157421
OFFSET
0,10
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 429.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
FORMULA
b(n) = (2/5)*(n-1)*b(n-1) + b(n-2) where b(n) = K_n(5). - Christian Krause, Dec 09 2023
MAPLE
f := proc(n) round( evalf ( BesselK( n, 5 ) )); end;
MATHEMATICA
Table[BesselK[n, 5] // Round, {n, 0, 25}] (* Jean-François Alcover, Feb 06 2016 *)
PROG
(PARI) a(n)=besselk(n, 5)\/1 \\ Charles R Greathouse IV, Oct 23 2023
CROSSREFS
Sequence in context: A129878 A094558 A074511 * A107594 A094195 A091843
KEYWORD
nonn
EXTENSIONS
Definition improved by Sean A. Irvine, Mar 28 2010
STATUS
approved