login
A094197
First integral ladder to be largest perpendicular-corner-bending for exactly n distinct pairs of integral corridor widths.
0
125, 15625, 1953125, 274625, 30517578125, 3814697265625, 34328125, 59604644775390625, 7450580596923828125, 4291015625, 116415321826934814453125, 75418890625, 1349232625
OFFSET
1,1
COMMENTS
In general the largest-bending ladder L across perpendicular corner where corridors of widths M and N meet,is given by L^(2/3)=M^(2/3)+ N^(2/3).
FORMULA
a(n)=d^3, where d=A006339(n).
EXAMPLE
a(4)=274625 because this is the smallest largest-integral-bending-ladder in 4 distinct stances, viz. with corridor width pairs (4096, 250047), (15625, 216000), (35937, 175616), (59319, 140608).
CROSSREFS
Cf. A088896.
Sequence in context: A121005 A264062 A067972 * A067491 A036532 A086704
KEYWORD
nonn
AUTHOR
Lekraj Beedassy, May 25 2004
STATUS
approved