login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094199
a(0) = -1/2; for n > 0, a(n) = 2*(5*n-4)*(5*n-6)*a(n-1) + Sum_{k=1..n-1} a(k)*a(n-k).
1
1, 49, 9800, 4412401, 3530881200, 4414129955298, 7945866428953600, 19467894010226044005, 62298157203907977632000, 252309651689367225339613486, 1261554846529199611110022246400, 7632433016288078444696820350362442, 54953647052313016042619300361129676800
OFFSET
1,2
COMMENTS
The unknown constant in the article "Shapes of binary trees" by S. Finch (page 3, unsolved problem) is C = 0.0196207628432398766811334785902747944894235476341... = sqrt(15)/(20*Pi^2). - Vaclav Kotesovec, Jan 19 2015
LINKS
S. R. Finch, Shapes of binary trees, June 24, 2004. [Cached copy, with permission of the author]
S. R. Finch, An exceptional convolutional recurrence, arXiv:2408.12440 [math.CO], 22 Aug 2024.
S. Janson, The Wiener index of simply generated random trees, Random Structures Algorithms 22 (2003) 337-358.
S. Janson and P. Chassaing, The center of mass of the ISE and the Wiener index of trees, arXiv:math/0309284 [math.PR], 2003.
Jian Zhou, On a Mean Field Theory of Topological 2D Gravity, arXiv:1503.08546 [math.AG], 30 Mar 2015.
FORMULA
With a(0) = -1/2 one has for n > 0 the recurrence a(n) = 2*(5*n-4)*(5*n-6)*a(n-1)+sum(a(k)*a(n-k), k=1..n-1).
a(n) ~ sqrt(3) * 2^(n-1) * 5^(2*n-1/2) * n^(2*n-1) / (Pi * exp(2*n)). The unknown constant in theorem 4.2. in the article by S. Janson and P. Chassaing is beta = 5*sqrt(15)/(2*Pi^2) = 0.981038142161993834... . - Vaclav Kotesovec, Jan 19 2015
EXAMPLE
a(2) = 2*(10-4)*(10-6)*a(1)+a(1) = 49 since a(1)=1.
MATHEMATICA
a[1] = 1; a[n_] := a[n] = 2*(5*n - 4)*(5*n - 6)*a[n - 1] + Sum[a[k]*a[n - k], {k, 1, n - 1}]; Table[a[n], {n, 1, 10}] (* Jean-François Alcover, Jun 20 2013 *)
CROSSREFS
Cf. A062980.
Sequence in context: A351598 A014801 A187406 * A194023 A195273 A222459
KEYWORD
nonn
AUTHOR
Steven Finch, May 25 2004
EXTENSIONS
Name corrected by Steven Finch, Aug 12 2024
STATUS
approved