login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094201
a(n) = 4*n^5 + 10*n^4 + 13*n^3 + 11*n^2 + 5*n + 1.
2
1, 44, 447, 2248, 7685, 20676, 47299, 96272, 179433, 312220, 514151, 809304, 1226797, 1801268, 2573355, 3590176, 4905809, 6581772, 8687503, 11300840, 14508501, 18406564, 23100947, 28707888, 35354425, 43178876, 52331319
OFFSET
0,2
COMMENTS
Let x(n) = (1/2)*(-(2*n+1) + sqrt((2*n+1)^2 + 4)) and f(k) = (-1)*(Sum_{i=1..k} Sum_{j=1..i} (-1)^floor(j*x(n))), then a(n) = Max{f(k): 0 < k < A094200(n)}.
FORMULA
G.f.: (37*x^4 + 206*x^3 + 198*x^2 + 38*x + 1)/(x - 1)^6. - Jinyuan Wang, Apr 06 2020
MATHEMATICA
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 44, 447, 2248, 7685, 20676}, 30] (* Harvey P. Dale, Oct 23 2021 *)
PROG
(PARI) a(n)=4*n^5+10*n^4+13*n^3+11*n^2+5*n+1
CROSSREFS
Sequence in context: A250336 A250337 A002613 * A210426 A231242 A221730
KEYWORD
nonn,easy
AUTHOR
Benoit Cloitre, May 25 2004
EXTENSIONS
Corrected by T. D. Noe, Nov 09 2006
STATUS
approved