OFFSET
1,5
COMMENTS
See A210109 for further information.
Row sums of the following table which shows how many words of length n over a 4-letter alphabet are 4-divided in k>=1 different ways:
1;
38, 4, 2;
253, 104, 66, 15, 3, 8, 0, 1;
1333, 684, 475, 231, 130, 167, 55, 41, 25, 11, 9, 9, 1, 2, 2;
- R. J. Mathar, Mar 25 2012
PROG
(Python)
from itertools import product, combinations, permutations
def is4div(b):
for i, j, k in combinations(range(1, len(b)), 3):
divisions = [b[:i], b[i:j], b[j:k], b[k:]]
all_greater = True
for p, bp in enumerate(permutations(divisions)):
if p == 0: continue
if b >= "".join(bp): all_greater = False; break
if all_greater: return True
return False
def a(n): return sum(is4div("".join(b)) for b in product("0123", repeat=n))
print([a(n) for n in range(1, 9)]) # Michael S. Branicky, Aug 30 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
R. J. Mathar, Mar 21 2012
EXTENSIONS
a(11)-a(14) from Michael S. Branicky, Aug 30 2021
STATUS
approved