login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A250337
Number of length 1+5 0..n arrays with every six consecutive terms having the maximum of some three terms equal to the minimum of the remaining three terms.
1
44, 429, 2056, 6785, 17796, 39949, 80144, 147681, 254620, 416141, 650904, 981409, 1434356, 2041005, 2837536, 3865409, 5171724, 6809581, 8838440, 11324481, 14340964, 17968589, 22295856, 27419425, 33444476, 40485069, 48664504, 58115681
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 3*n^5 + 10*n^4 + 15*n^3 + 11*n^2 + 4*n + 1.
Conjectures from Colin Barker, Nov 12 2018: (Start)
G.f.: x*(44 + 165*x + 142*x^2 + 4*x^3 + 6*x^4 - x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)
EXAMPLE
Some solutions for n=6:
..2....6....4....6....3....2....0....3....0....5....4....2....3....6....5....4
..3....3....2....2....0....3....5....1....6....3....1....1....6....1....3....5
..3....6....6....3....3....3....0....6....0....3....2....5....4....5....2....6
..1....5....0....5....1....0....4....1....0....2....2....2....1....4....4....1
..6....5....4....0....0....6....4....3....6....2....1....2....5....4....4....4
..6....0....6....3....1....5....5....5....0....4....2....5....4....4....6....1
CROSSREFS
Row 1 of A250336.
Sequence in context: A264555 A231217 A250336 * A002613 A094201 A210426
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 19 2014
STATUS
approved