login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A250336
T(n,k)=Number of length n+5 0..k arrays with every six consecutive terms having the maximum of some three terms equal to the minimum of the remaining three terms
15
44, 429, 68, 2056, 907, 108, 6785, 5264, 1989, 172, 17796, 20085, 14040, 4409, 272, 39949, 59396, 62041, 37824, 9771, 424, 80144, 147903, 206724, 193437, 101264, 21523, 648, 147681, 325312, 569693, 725596, 596245, 266448, 46941, 996, 254620
OFFSET
1,1
COMMENTS
Table starts
...44....429.....2056......6785.....17796......39949.......80144......147681
...68....907.....5264.....20085.....59396.....147903......325312......651369
..108...1989....14040.....62041....206724.....569693.....1369136.....2966769
..172...4409....37824....193437....725596....2210213.....5794496....13561449
..272...9771...101264....596245...2506320....8403783....23943648....60312393
..424..21523...266448...1789193...8357144...30606683....94080768...253309665
..648..46941...682576...5156313..26422104..104374957...341862816...971811153
..996.103647..1775840..15207653..86279700..371391819..1310493568..3979387305
.1544.231359..4688592..45754029.288823480.1360791587..5193605728.16905033465
.2404.519971.12466400.138814961.976092436.5038261323.20813768640.72664579185
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-3) +2*a(n-6) -2*a(n-9) -a(n-10) -a(n-12) +a(n-15)
k=2: [order 70]
Empirical for row n:
n=1: a(n) = 3*n^5 + 10*n^4 + 15*n^3 + 11*n^2 + 4*n + 1
n=2: a(n) = n^6 + 9*n^5 + 20*n^4 + (68/3)*n^3 + 12*n^2 + (7/3)*n + 1
n=3: [polynomial of degree 7]
n=4: [polynomial of degree 8]
n=5: [polynomial of degree 9]
n=6: [polynomial of degree 9]
n=7: [polynomial of degree 9]
EXAMPLE
Some solutions for n=4 k=4
..0....0....0....2....0....1....0....0....1....0....0....2....0....0....0....0
..3....1....1....0....2....4....4....1....4....4....3....2....1....1....0....1
..4....3....3....0....3....1....1....2....0....2....3....2....2....0....0....4
..3....3....4....2....3....1....2....2....1....2....3....2....4....1....0....1
..3....3....1....2....3....0....2....4....1....1....3....2....2....2....0....1
..2....4....1....4....3....1....2....2....1....2....4....3....2....2....0....0
..4....4....1....4....1....1....2....0....1....4....4....0....1....1....0....0
..1....2....1....0....2....2....4....1....0....1....3....4....3....1....1....3
..3....1....2....0....3....4....2....2....0....3....0....2....0....1....2....1
CROSSREFS
Sequence in context: A190605 A264555 A231217 * A250337 A002613 A094201
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 19 2014
STATUS
approved