login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of length n+5 0..k arrays with every six consecutive terms having the maximum of some three terms equal to the minimum of the remaining three terms
15

%I #4 Nov 19 2014 07:14:24

%S 44,429,68,2056,907,108,6785,5264,1989,172,17796,20085,14040,4409,272,

%T 39949,59396,62041,37824,9771,424,80144,147903,206724,193437,101264,

%U 21523,648,147681,325312,569693,725596,596245,266448,46941,996,254620

%N T(n,k)=Number of length n+5 0..k arrays with every six consecutive terms having the maximum of some three terms equal to the minimum of the remaining three terms

%C Table starts

%C ...44....429.....2056......6785.....17796......39949.......80144......147681

%C ...68....907.....5264.....20085.....59396.....147903......325312......651369

%C ..108...1989....14040.....62041....206724.....569693.....1369136.....2966769

%C ..172...4409....37824....193437....725596....2210213.....5794496....13561449

%C ..272...9771...101264....596245...2506320....8403783....23943648....60312393

%C ..424..21523...266448...1789193...8357144...30606683....94080768...253309665

%C ..648..46941...682576...5156313..26422104..104374957...341862816...971811153

%C ..996.103647..1775840..15207653..86279700..371391819..1310493568..3979387305

%C .1544.231359..4688592..45754029.288823480.1360791587..5193605728.16905033465

%C .2404.519971.12466400.138814961.976092436.5038261323.20813768640.72664579185

%H R. H. Hardin, <a href="/A250336/b250336.txt">Table of n, a(n) for n = 1..2035</a>

%F Empirical for column k:

%F k=1: a(n) = a(n-1) +a(n-3) +2*a(n-6) -2*a(n-9) -a(n-10) -a(n-12) +a(n-15)

%F k=2: [order 70]

%F Empirical for row n:

%F n=1: a(n) = 3*n^5 + 10*n^4 + 15*n^3 + 11*n^2 + 4*n + 1

%F n=2: a(n) = n^6 + 9*n^5 + 20*n^4 + (68/3)*n^3 + 12*n^2 + (7/3)*n + 1

%F n=3: [polynomial of degree 7]

%F n=4: [polynomial of degree 8]

%F n=5: [polynomial of degree 9]

%F n=6: [polynomial of degree 9]

%F n=7: [polynomial of degree 9]

%e Some solutions for n=4 k=4

%e ..0....0....0....2....0....1....0....0....1....0....0....2....0....0....0....0

%e ..3....1....1....0....2....4....4....1....4....4....3....2....1....1....0....1

%e ..4....3....3....0....3....1....1....2....0....2....3....2....2....0....0....4

%e ..3....3....4....2....3....1....2....2....1....2....3....2....4....1....0....1

%e ..3....3....1....2....3....0....2....4....1....1....3....2....2....2....0....1

%e ..2....4....1....4....3....1....2....2....1....2....4....3....2....2....0....0

%e ..4....4....1....4....1....1....2....0....1....4....4....0....1....1....0....0

%e ..1....2....1....0....2....2....4....1....0....1....3....4....3....1....1....3

%e ..3....1....2....0....3....4....2....2....0....3....0....2....0....1....2....1

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Nov 19 2014