login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210425
Number of 3-divided words of length n over a 4-letter alphabet.
2
0, 0, 4, 60, 374, 1960, 9103, 40497, 174127, 735268, 3064477, 12664101, 52005445, 212595280, 866047122
OFFSET
1,3
COMMENTS
See A210109 for further information.
Row sums of the following table which shows how many words of length n over a 4-letter alphabet are 3-divided in k>=1 different ways:
4;
41, 14, 5;
147, 111, 67, 29, 14, 6;
594, 358, 381, 211, 156, 128, 80, 28, 17, 7;
2072, 1400, 1433, 875, 821, 669, 588, 369, 340, 240, 163, 72, 33, 20, 8;
- R. J. Mathar, Mar 25 2012
PROG
(Python)
from itertools import product
def is3div(b):
for i in range(1, len(b)-1):
for j in range(i+1, len(b)):
X, Y, Z = b[:i], b[i:j], b[j:]
if all(b < bp for bp in [X+Z+Y, Z+Y+X, Y+X+Z, Y+Z+X, Z+X+Y]):
return True
return False
def a(n): return sum(is3div("".join(b)) for b in product("0123", repeat=n))
print([a(n) for n in range(1, 9)]) # Michael S. Branicky, Aug 30 2021
CROSSREFS
Sequence in context: A060492 A234952 A112041 * A366690 A002060 A247739
KEYWORD
nonn
AUTHOR
R. J. Mathar, Mar 21 2012
EXTENSIONS
a(12)-a(15) from Michael S. Branicky, Aug 30 2021
STATUS
approved