login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060492
Triangle T(n,k) of k-block ordered tricoverings of an unlabeled n-set (n >= 3, k = 4..2n).
8
4, 60, 120, 13, 375, 3030, 9030, 5040, 28, 1392, 24552, 207900, 838320, 1345680, 362880, 50, 4020, 130740, 2208430, 20334720, 101752560, 257065200, 261122400, 46569600, 80, 9960, 551640, 16365410, 274814760, 2709457128, 15812198640
OFFSET
3,1
COMMENTS
A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.
All columns are polynomials of order binomial(k, 3). - Andrew Howroyd, Jan 30 2020
LINKS
Andrew Howroyd, Table of n, a(n) for n = 3..1522 (rows n=3..40)
FORMULA
E.g.f. for ordered k-block tricoverings of an unlabeled n-set is exp(-x+x^2/2+x^3/3*y/(1-y))*Sum_{k=0..inf}1/(1-y)^binomial(k, 3)*exp(-x^2/2*1/(1-y)^n)*x^k/k!.
EXAMPLE
Triangle begins:
[4, 60, 120],
[13, 375, 3030, 9030, 5040],
[28, 1392, 24552, 207900, 838320, 1345680, 362880],
[50, 4020, 130740, 2208430, 20334720, 101752560, 257065200, 261122400, 46569600], [80, 9960, 551640, 16365410, 274814760, 2709457128, 15812198640, 52897521600, 91945022400, 64778313600, 8043235200],
...
There are 184 ordered tricoverings of an unlabeled 3-set: 4 4-block, 60 5-block and 120 6-block tricoverings (cf. A060491).
PROG
(PARI) \\ gives g.f. of k-th column.
ColGf(k) = k!*polcoef(exp(-x + x^2/2 + x^3*y/(3*(1-y)) + O(x*x^k) )*sum(j=0, k, 1/(1-y)^binomial(j, 3)*exp((-x^2/2)/(1-y)^j + O(x*x^k))*x^j/j!), k) \\ Andrew Howroyd, Jan 30 2020
(PARI)
T(n)={my(m=2*n, y='y + O('y^(n+1))); my(g=serlaplace(exp(-x + x^2/2 + x^3*y/(3*(1-y)) + O(x*x^m))*sum(k=0, m, 1/(1-y)^binomial(k, 3)*exp((-x^2/2)/(1-y)^k + O(x*x^m))*x^k/k!))); Mat([Col(p/y^3, -n) | p<-Vec(g)[2..m+1]])}
{ my(A=T(8)); for(n=3, matsize(A)[1], print(A[n, 4..2*n])) } \\ Andrew Howroyd, Jan 30 2020
CROSSREFS
Row sums are A060491.
Columns k=4..6 are A060488, A060489, A060490.
Sequence in context: A298713 A058173 A074835 * A234952 A112041 A210425
KEYWORD
nonn,tabf
AUTHOR
Vladeta Jovovic, Mar 20 2001
STATUS
approved