login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,k) of k-block ordered tricoverings of an unlabeled n-set (n >= 3, k = 4..2n).
8

%I #12 Jan 30 2020 16:35:25

%S 4,60,120,13,375,3030,9030,5040,28,1392,24552,207900,838320,1345680,

%T 362880,50,4020,130740,2208430,20334720,101752560,257065200,261122400,

%U 46569600,80,9960,551640,16365410,274814760,2709457128,15812198640

%N Triangle T(n,k) of k-block ordered tricoverings of an unlabeled n-set (n >= 3, k = 4..2n).

%C A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.

%C All columns are polynomials of order binomial(k, 3). - _Andrew Howroyd_, Jan 30 2020

%H Andrew Howroyd, <a href="/A060492/b060492.txt">Table of n, a(n) for n = 3..1522</a> (rows n=3..40)

%F E.g.f. for ordered k-block tricoverings of an unlabeled n-set is exp(-x+x^2/2+x^3/3*y/(1-y))*Sum_{k=0..inf}1/(1-y)^binomial(k, 3)*exp(-x^2/2*1/(1-y)^n)*x^k/k!.

%e Triangle begins:

%e [4, 60, 120],

%e [13, 375, 3030, 9030, 5040],

%e [28, 1392, 24552, 207900, 838320, 1345680, 362880],

%e [50, 4020, 130740, 2208430, 20334720, 101752560, 257065200, 261122400, 46569600], [80, 9960, 551640, 16365410, 274814760, 2709457128, 15812198640, 52897521600, 91945022400, 64778313600, 8043235200],

%e ...

%e There are 184 ordered tricoverings of an unlabeled 3-set: 4 4-block, 60 5-block and 120 6-block tricoverings (cf. A060491).

%o (PARI) \\ gives g.f. of k-th column.

%o ColGf(k) = k!*polcoef(exp(-x + x^2/2 + x^3*y/(3*(1-y)) + O(x*x^k) )*sum(j=0, k, 1/(1-y)^binomial(j, 3)*exp((-x^2/2)/(1-y)^j + O(x*x^k))*x^j/j!), k) \\ _Andrew Howroyd_, Jan 30 2020

%o (PARI)

%o T(n)={my(m=2*n, y='y + O('y^(n+1))); my(g=serlaplace(exp(-x + x^2/2 + x^3*y/(3*(1-y)) + O(x*x^m))*sum(k=0, m, 1/(1-y)^binomial(k, 3)*exp((-x^2/2)/(1-y)^k + O(x*x^m))*x^k/k!))); Mat([Col(p/y^3, -n) | p<-Vec(g)[2..m+1]])}

%o { my(A=T(8)); for(n=3, matsize(A)[1], print(A[n, 4..2*n])) } \\ _Andrew Howroyd_, Jan 30 2020

%Y Row sums are A060491.

%Y Columns k=4..6 are A060488, A060489, A060490.

%Y Cf. A059443, A059530, A060052, A060092, A060487, A331571.

%K nonn,tabf

%O 3,1

%A _Vladeta Jovovic_, Mar 20 2001