login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A094202
Integers k whose Zeckendorf representation A014417(k) is palindromic.
30
0, 1, 4, 6, 9, 12, 14, 22, 27, 33, 35, 51, 56, 64, 74, 80, 88, 90, 116, 127, 145, 158, 174, 184, 197, 203, 216, 232, 234, 276, 294, 326, 368, 378, 399, 425, 441, 462, 472, 493, 519, 525, 546, 572, 588, 609, 611, 679, 708, 760, 828, 847, 915, 944, 988, 1022, 1064, 1090
OFFSET
1,3
REFERENCES
C. G. Lekkerkerker, Voorstelling van natuurlijke getallen door een som van getallen van Fibonacci, Simon Stevin vol. 29, 1952, pages 190-195.
E. Zeckendorf, Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bulletin de la Société Royale des Sciences de Liège vol. 41 (1972) pages 179-182.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..20000 (first 129 terms from Indranil Ghosh)
Ron Knott, Fibonacci Bases.
EXAMPLE
Fibonacci base columns are ...,8,5,3,2,1 with column entries 0 or 1 and no two consecutive ones (the Zeckendorf representation) so that each n has a unique representation.
12 is in the sequence because 12 = 8 + 3 + 1 = 10101 base Fib; 14 = 13 + 1 = 100001 base Fib.
MATHEMATICA
zeck[n_Integer] := Block[{k = Ceiling[ Log[ GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[ fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k-- ]; FromDigits[fr]]; a = {}; Do[z = zeck[n]; If[ FromDigits[ Reverse[ IntegerDigits[z]]] == z, AppendTo[a, n]], {n, 1123}]; a (* Robert G. Wilson v, May 29 2004 *)
mirror[dig_, s_] := Join[dig, s, Reverse[dig]]; select[v_, mid_] := Select[v, Length[#] == 0 || Last[#] != mid &]; fib[dig_] := Plus @@ (dig * Fibonacci[Range[2, Length[dig] + 1]]); pals = Rest[IntegerDigits /@ FromDigits /@ Select[Tuples[{0, 1}, 7], SequenceCount[#, {1, 1}] == 0 &]]; Union@Join[{0, 1}, fib /@ Join[mirror[#, {}] & /@ (select[pals, 1]), mirror[#, {1}] & /@ (select[pals, 1]), mirror[#, {0}] & /@ pals]] (* Amiram Eldar, Jan 11 2020 *)
PROG
(Python)
from sympy import fibonacci
def a(n):
k=0
x=0
while n>0:
k=0
while fibonacci(k)<=n: k+=1
x+=10**(k - 3)
n-=fibonacci(k - 1)
return x
def ok(n):
x=str(a(n))
return x==x[::-1]
print([n for n in range(1101) if ok(n)]) # Indranil Ghosh, Jun 07 2017
CROSSREFS
Gives the positions of zeros in A095734. Subsets: A095730, A048757. A006995 gives the integers whose binary expansion is palindromic.
Sequence in context: A122550 A191407 A076083 * A310666 A304231 A007074
KEYWORD
nonn,base
AUTHOR
Ron Knott, May 25 2004
EXTENSIONS
More terms from Robert G. Wilson v, May 28 2004
Offset changed to 1 by Alois P. Heinz, Aug 02 2017
STATUS
approved